Учебное пособие: Постійний електричний струм
Запишемо закон Ома для кожної окремої неоднорідної ділянки кола (рис. 10.4):
, (10.3.9)
, (10.3.10)
. (10.3.11)
Зведемо рівності (10.3.9) – (10.3.11) до спільного знаменника й додамо їх
І1 (R1 +r1 ) + I2 (R2 +r2 ) + I3 (R3 +r3 ) = 1 + 2 + 3 ,
або
, (10.3.12)
де - алгебраїчна сума всіх спадів напруг в замкнутому колі; - алгебраїчна сума електрорушійних сил в цьому колі.
Рівність (10.3.12) називається другим правилом Кірхгофа. Правила Кірхгофа значно полегшують розрахунки розгалужених кіл і широко використовуються в електротехнічних дисциплінах.
4. Закони Ома й Джоуля-Ленца в диференціальній формі. Густина електричного струму в провіднику
Розглянемо елемент провідника перерізом S і довжиною . Концентрація вільних електронів у такому провіднику дорівнює n (рис.10.5)
Рис.10.5
Нехай в такому елементі за допомогою сторонньої сили джерела створений струм І. Величина струму в провіднику буде дорівнювати:
, (10.4.1)
де - число зарядів у елементі провідника з об’ємом ; n – концентрація вільних електронів; qo – елементарний електричний заряд; - середня швидкість направленого руху носіїв струму.
Розрахунки показують, що наближено кілька міліметрів за секунду. Це дуже мала швидкість. Швидкість хаотичного руху електронів у металевому провіднику при звичайних умовах має порядок 106 м/с.
Густину струму провідності в провіднику легко знайти, поділивши (10.4.1) на переріз провідника S
. (10.4.2)
Розрахунки показують, що у кабелі з двох жил перерізом 1 мм2 безпечним є струм, який не перевищує величини (12,5 15)А. Якщо цей струм, а також концентрацію вільних носіїв струму, яка для більшості провідників не перевищує 1029 м-3 , підставити у формулу (10.4.2), то одержимо значення швидкості направленого руху електронів. Ця швидкість буде дорівнювати лише кілька міліметрів за секунду. В процесі направленого руху носії струму більшість часу перебувають у вузлах кристалічної решітки.
Знайдемо середню швидкість направленого руху носіїв струму у провіднику, які рухаються під дією сторонніх сил джерела струму.
Будемо вважати, що між двома сусідніми взаємодіями з вузлами кристалічної решітки носії струму рухаються з прискоренням a. Нехай між двома сусідніми взаємодіями кожен з електронів вільно рухається протягом часу . Перед взаємодією швидкість електрона досягає максимального значення max Вириваючись із вузла решітки швидкість електрона дорівнює нулю.
Тому середня швидкість направленого руху електрона між двома сусідніми взаємодіями буде дорівнювати
. (10.4.3)
Оскільки рух рівноприскорений, то
max = a.
Прискорення руху носіїв струму простіше знаходити із 2-го закону Ньютона, тобто
qо E = ma,