Учебное пособие: Розвиток фізики в ІІ половині ХІХ–на початку ХХ століття
Творцем електронної теорії є нідерландський фізик Гендрік Лоренц (1853-1928), який у 1892 році опублікував велику роботу "Електромагнітна теорія Максвелла і її застосування до рухомих тіл". Послідовне ж викладення було подане ним у фундаментальній праці "Досвід теорії електричних і оптичних явищ в рухомих тілах". Згідно з теорією Лоренца: простір, який займає речовина, відрізняється від порожнього простору тим, що в нього вкраплені окремі негативно й позитивно заряджені частинки, рухом яких і створюються електричне й магнітне поля, що мають мікроскопічний характер.
В статті "Електронна теорія" (1903) Лоренц виклав у дещо зміненій формі рівняння Максвелла, котрі отримали назву рівнянь Максвелла-Лоренца: ; ; ; . З них випливає, що нерухомий електрон створює кулонівське електростатичне поле, а рухомий електрон – електромагнітне поле, енергія якого при рівномірному русі електрона переноситься разом з електроном і випромінювання електромагнітної енергії не відбуватиметься.
На основі електронної теорії Лоренц дав тлумачення діелектричної та магнітної проникності, теоретично обґрунтував виявлений зв'язок між коефіцієнтами електропровідності та теплопровідності провідників, а також пояснив на основі виведеного ним узагальненого виразу для сили, що діж на нерухомий заряд, наявність так званої сили Лоренца і відкритий у 1879 році ефект Холла.
Електронна теорія пояснила також відкрите в 1896 році нідерландським фізиком П. Зеєманом (1865-1943) явище розщеплення спектральних ліній під дією зовнішнього магнітного поля. Лоренц також пояснив і передбачив ряд нових явищ, наприклад, поляризацію компонентів триплету, що виникає в магнітному полі, які експериментально були відкриті значно пізніше.
Велика роль в історії відкриття електрона належить дослідженням електронних явищ у розріджених газах, виконаних в останній чверті ХІХ століття. В 1869 році німецький фізик І. Гітторф (1824-1914), спостерігаючи електричний розряд у спеціальних трубках з розрідженим газом при тиску нижче 0,1 мм рт ст. виявив катодні промені, які викликали сильну люмінісенцію і зміщувалися під впливом дії магнітного поля. Через кілька років після відкриття катодних променів англійських фізик Уїльям Крукс (1832-1919) прийшов до висновку, що катодні промені – це потік заряджених частинок, які поширюються від катода прямолінійно, утворюючи геометричну тінь від непрозорих предметів, а також створює механічний тиск ("млинок Крукса") і відхиляються магнітним полем.
Але в 1883 році німецький фізик Генріх Герц, а в 1893 році його учень Ф. Ленард показали, що катодні промені можуть проходити через тонку алюмінієву фольгу, і зробили висновок, що катодні промені – це не потік корпускул, а електромагнітні хвилі. Питання про природу катодних променів остаточно розв’язав французький фізик Ж. Перрен (1870-1942), який безпосередньо довів, що ці промені являють собою потік негативно заряджених частинок. Ж. Перрен вмістив усередину трубки циліндр, сполучений з електроскопом. Колив циліндр потрапляли катодні промені, електроскоп виявляв негативний заряд. Цим самим було спростовано думку про те, що катодні промені мають таку ж природу, як і світло.
Нарешті англійський фізик Джозеф Джон Томсон (1856-1940), досліджуючи проходження електричного струму через розріджені гази, розробив методику дослідження катодних променів за допомогою електричних та магнітних полів і в 1897 році показав, що відношення електричного заряду до маси для частинок, що утворюють катодні промені, набагато більше, ніж для іонів водню при електролізі. На основі цього він висловив гіпотезу: в катодних променях електричні заряди переносяться частинками, розміри і маса яких набагато менші від розмірів атомів водню. У 1898 році Дж. Томсон визначив заряд частинок катодних променів, який виявився рівним заряду іона водню при електролізі, а самі частинки дістали назву електронів. Так була відкрита перша елементарна частинка – електрон.
Одним з важливих методів перевірки цього відкриття Дж. Томсон вважав дослідження природи заряду, що знімається з поверхні металу при її освітленні. Це явище відоме під назвою зовнішній фотоефект і було виявлене в 1887 році Г. Герцом при проведенні дослідів з електромагнітними хвилями і частково досліджене в 1888 році фізиком німецьким Б. Гальваксом (1859-1922), який показав, що метали під дією ультрафіолетового проміння втрачають негативний заряд.
Ґрунтовні дослідження фотоефекту виконав у 1888-1890 роках О. Г. Столєтов. Столєтов уперше довів, що сила фотоелектричного струму пропорційна інтенсивності світла, яке поглинається катодом; неоднакову чутливість до рівних довжин хвиль; вперше відкрив наявність струму насичення в фотоелементі тощо.
В 1905-1906 роках А. Ейнштейн в своїх працях звернув уперше увагу на ідею про квант, котру розвинув далі, сформулювавши основи квантової теорії. Ейнштейн вивів рівняння фотоефекту: , згідно з яким енергія фотона, що поглинається при вириванні з металу одного електрона іде на роботу виходу електрона А і на надання йому кінетичної енергії.
Була здійснена експериментальна перевірка рівняння Ейнштейна, в котрій була визначена стала Планка, яка співпала зі значенням Макса Планка.
У 1905 проці Ейнштейн в праці "До електродинаміки рухомих тіл" сформулював теорію відносності. Поява прямих експериментальних фактів, які суперечили законам класичної фізики, спонукала Ейнштейна переглянути просторово-часові уявлення і пояснити ці факти, виходячи із загальних властивостей простору і часу.
Згідно першого принципу теорії відносності, всі фізичні процеси в інерціальній системі відліку не залежать від швидкості її руху відносно інших тіл чи систем. Згідно другого принципу, швидкість світла у вакуумі с постійна і не залежить від швидкості руху джерела світла. Ці постулати становлять основу СТВ (спеціальної теорії відносності), в якій А. Ейнштейн дав формулювання нових законів руху, які узагальнили закони руху Ньютона і зводились до цих законів лише у випадку настільки малих швидкостей тіл υ, що відношенням можна було знехтувати.
Також у тому ж 1905 році Альберт Ейнштейн виразив співвідношення між масою і енергією знаменитим рівнянням: , де m – маса; с – швидкість світла. Ця формула зберігає своє значення і при будь-яких швидкостях, якщо тільки під mрозуміти інертну масу тіла, що залежить від швидкості відповідно до закону:
,
де υ – швидкість тіла; m0 – маса спокою.
Масі спокою відповідає енергія спокою .
Співвідношення маси і енергії, встановлене в формулі Ейнштейна, дало змогу визначити ту велику кількість енергії, що знаходиться в ядрах атомів. На основі цієї формули можна обчислити, яка кількість грамів уранового палива потрібна для забезпечення трансокеанського рейсу атомного корабля чи польоту ракети на ядерному паливі; вона дає можливість розрахувати критичну масу для здійснення ядерного вибуху тощо.
Для теорії відносності евклідова геометрія не зовсім спрацьовувала, а саме її слабким місцем була аксіома про паралельність прямих. Саме казанський математик Микола Іванович Лобачевський (1792-1856) у 1826 році прийшов до висновку, що замість п’ятого постулату потрібно висунути протилежний йому і цим створити логічну геометрію без протиріч. Це була нова неевклідова геометрія, така ж істинна, як і евклідова, хоча описувала абсолютно новий, неевклідовий простір. Питання про те, яку слід використовувати геометрію, вирішується тільки дослідом.
Розвитку ідей теорії відносності присвятив свою наукову діяльність і Герман Мінковський (1864-1909), який в своїх працях сформулював математичну теорію фізичних процесів в чотиривимірному просторі, в якій перетворення Ейнштейна дістали наочну геометричну інтерпретацію. Теорія Мінковського завершила побудову СТВ.
До 1916 року А. Ейнштейн створив і загальну теорію відносності, яка базується на поєднанні принципу еквівалентності та принципу відносності і є релятивістською теорією тяжіння.
Зараз теорія відносності є загальноприйнятою і її зміст отримав діалектико-матеріалістичне обґрунтування.
2.3 Періодичний закон Д. І, Менделєєва і роботи по вивченню будови речовини. Відкриття рентгенівських променів і радіоактивності
Передісторія сучасної атомної фізики починається з геніального відкриття Д. І. Менделєєвим (1834-1907) в 1869 році періодичного закону. Менделєєв у своєму підручнику "Основи хімії" не тільки сформулював важливий закон науки – періодичність властивостей хімічних елементів – і на його основі створив систему елементів, але вперше вказав на можливість перетворення елементів і з великою точністю передбачив існування ще не відкритих елементів та описав їхні властивості. В 1875 році був відкритий галій, що зайняв у таблиці місце, передбачене Д. І Менделєєвим (№31), а в 1879 році був відкритий елемент скандій (№21) і в 1886 році – германій (№32).
Наступний розвиток науки повністю підтвердив думки Д. І. Менделєєва. Його ідею про склад і будову атома розвинув у 80-х роках ХІХ століття видатний російський учений М. О. Морозов (1854-1946), який висловив думку про складну будову атома і можливість його розкладу, а також висунув ідею про наявність нульової групи елементів, припущення про існування найдрібніших заряджених частинок "катодія" і "анодія" - прототипів електрона і протона.
Цікаві думки про будову атома висловив у 90-х роках ХІХ століття Б. М. Чичерін (1828-1904), який в ряді статей , присвячених періодичному законові, висловлював ідею електричної будови атомів, що складалися, на його думку, з позитивно зарядженого центра і від’ємна зарядженої периферійної частини.
Новий період у розвитку питання про будову речовини почався з відкриття німецьким фізиком В. Рентгеном (1845-1923) так званих Х-променів. В своїх трьох публікаціях "Про новий вид променів" (1895-1898) Рентген дав вичерпний опис властивостей цих променів: фотографічна дія, іонізація повітря; відкрив закони поглинання цих променів і зв'язок поглинання з густиною, дав оцінку жорсткості – поглинальної здатності Х-променів.
Академік Йоффе говорив про Рентгена: "У трьох невеликих статтях, опублікованих протягом року, Рентгеном дано такий вичерпний опис властивостей цих променів, що сотні праць, які з’явилися пізніше, впродовж 12 років, не змогли ні додати, ні відняти нічого істотного". Чи справді це так? Три вище згадані повідомлення Рентгена датовані в такій послідовності: 28 грудня 1895 року – перша стаття; 9 березня 1896 року – друга стаття; травень 1897 року – третя стаття. У першій статті Рентген виклав такі відомості. Він встановив, що виникають ці промені у стінках скляної трубки, куди потрапляють катодні промені. Також Вільям підкреслив, що промені не зазнають заломлення у призмах з різних матеріалів і не відхиляються магнітним полем на відміну від катодних променів. Також Рентген зауважив, що правильне відбивання променів від променів від поверхні тіл відсутнє, а різні речовини відносно Х-променів поводять себе так, як і мутні середовища відносно світла.
Двом іншим статтям передували дві статті айстро-угорського фізика, за походженням українця, Івана Павловича Пулюя, які відповідно датовані: 13 лютого 1896 року – перша стаття; 5 березня 1896 року – друга стаття. Вийшли вони в дуже авторитетному європейському виданні – лондонському журналі "Повідомлення Імператорської Академії Наук". Суттєві результати пріоритетного характеру, отримані Пулюєм, були наступні. Пулюй виявив, що Х-промені викликають провідність газів, тобто їхню іонізацію. Цю властивість Рентген описав лише у другій статті. Також Пулюй дослідив просторовий розподіл інтенсивності променів за допомогою своєї трубки, яку сконструював на початку 80-х років. Аналогічні дослідження Рентген виклав лише в своїй третій статті у травні 1897 році. Саме Пулюй, а не Рентген, розробив у 1882 році трубку, яка мала основні риси сучасних рентгенівських трубок, тобто окремий від анода антикатод, розміщений похило відносно падаючого на нього пучка катодних променів. Пулюй першим зробив знімок цілого скелета. Безпосередньо після отримання інформації про здійснене професором Рентгеном відкриття Х-променів, професор Пулюй, фізик Вищої технічної школи Праги, зробив на цю тему доповідь з демонстраціями 15 лютого 1896 року. Він продемонстрував апарати власної конструкції, просвітив на сцені сейф, дога, чоловіка та жінку. Вперше можна було бачити вміст закритих предметів, живі, рухомі скелети в живих рухомих людях. Пулюй першим прагнув з’ясувати природу Х-променів. Відкриття Рентгеном Х-променів є загадковим, невідомо, як він до цього дійшов, проте якби це був не Рентген, був би хтось інший.