Учебное пособие: Розвиток фізики в ІІ половині ХІХ–на початку ХХ століття
Народився 2 лютого 1845 року в містечку Гримайлові (тепер Тернопільська область) в родині землеробів. У 1865 році закінчивши Тернопільську гімназію, вступив на теологічний факультет Віденського університету. Як вільний слухач, відвідував лекції з математики, фізики й астрономії. Завершивши курс богослов’я, захопився фізико-математичними науками, тому перейшов на філософський факультет. У 1872 році, закінчивши університет, працював на посаді асистента експериментальної фізики цього ж університету. Протягом 1874-1875 років працював асистентом-викладачем кафедри фізики, механіки та математики військово-морської академії у м. Фіуме. Восени 1875 року виїхав до Страсбурга з метою вивчити електротехніку. У 1876 році успішно захистив дисертацію і отримав ступінь доктора філософії. В цьому році повернувся до Відня, де на посаді приват-доцента Віденського університету читав лекції з молекулярно-кінетичної теорії газів і механічної теорії теплоти, а також працював асистентом у лабораторії австрійського фізика Лянга. 1882 року отримав посаду технічного директора фабрики електроламп власної конструкції. У 1884 році Пулюя запросили на посаду професора експериментальної та технічної фізики в Німецьку Вищу технічну школу м. Праги, де працював до виходу на пенсію. В 1888-89 роках Іван Павлович був ректором цієї школи, а в 1902 році стає засновником і керівником кафедри електротехніки.
Відкриття Рентгена спонукало фізиків зайнятися пошуками нових видів випромінювання. В 1896 році французький фізик Анрі Беккерель (1852-1908) відкрив явище радіоактивності. Він експериментально встановив, що солі урану діють на фотоплівку навіть в тому випадку, коли вони попередньо не опромінювалися світлом. Це означало, що випромінювання викликалося не люмінісцентністю, а що його джерелом є сам уран.
Пізніше Марія Склодовська-Кюрі (1867-1934) цю властивість атомів урану та інших речовин випускати випромінювання назвала радіоактивністю.
Перші дослідження Беккереля показали, що інтенсивність випромінювання зростає із збільшенням концентрації урану, не залежить від тиску і температури, не змінюється від дії електричного і магнітного полів і не залежить від виду хімічної сполуки, в яку входить уран.
Дослідження М. Склодовської-Кюрі та П’єра Кюрі (1859-1906) виявили, що таку властивість має не тільки уран. У липні 1898 році подружжя винайшло новий радіоактивний елемент – полоній. Радіоактивність полонію більша приблизно в 400 разів від радіоактивності урану. В грудні 1898 року відкрили радій, радіоактивність якого набагато більша від радіоактивності урану та полонію.
Явище радіоактивності зацікавило багатьох учених. Фізики прагнули з’ясувати природу радіоактивних променів. У 1899 році англійський учений Е. Резерфорд ( 1871-1937) встановив, що радіоактивність випромінювання неоднорідна і складається з двох компонентів з різною проникною здатністю.
Промені з малою проникною здатністю були названі Резерфордом α-промені, а промені з більшою проникною здатністю β-променями. В 1900 році П. Віллард виявив третій компонент радіоактивного випромінювання – γ-промені, які не відхилялися в магнітному полі, що свідчило про відсутність заряду, незважаючи на їхній великий запас енергії.
В тому ж 1900 році Резерфорд установив, що α-промені позитивно заряджені і відхиляються в магнітному полі. А в 1902 році обчисливши заряд цієї частинки і дослідивши її відхилення в електричному полі, Резерфорд виявив, що відхилення її у магнітному полі є іонізованими ядрами гелію. Також було встановлене сильне відхилення в магнітному полі β-частинок, що свідчило про їхню незначну масу порівняно з альфа-частинками. Відношення заряду до маси для β-частинки виявилось таким, як і в електрона. Отже, β-випромінювання – це електрони.
Потім Резерфорд разом зі своїм співробітником Фредеріком Содді (1877-1956) запропонували теорію радіоактивного розпаду (радіоактивність є наслідком самовільного перетворення елементів, що супроводжується випромінюванням, енергія якого береться з самого атома). Ними був відкритий закон спонтанного радіоактивного розпаду:
,
де N0 – вихідна кількість атомів радіоактивного елементу в початковий момент часу;
λ – стала радіоактивного розпаду;
N – кількість атомів у тому ж об’ємі, які розпадаються за час t.
У 1913 році Ф. Содді одночасно з польським фізиком К. Фаянсом сформулювали закони зміщення при альфа- та бета-розпадах і тим самим передбачили місце в періодичній системі Менделєєва для нових елементів, які утворюються при цьому.
Всі вище згадані відкриття ІІ половини ХІХ – початку ХХ століття зробили переворот в уявленнях про атом. Перед фізикою постало нове питання: яка ж внутрішня будова атома?
На початку ХХ століття було запропоновано кілька різних схем внутрішньої будови атома, серед яких слід назвати модель В. Томсона, який у 1902 році в статті "Епінус атомізований" висловив гіпотезу про те, що атом має вигляд сфери, рівномірно заповненої позитивною електрикою. Всередині цієї сфери міститься така ж кількість електронів, еквівалентна позитивному заряду, і тому атом є електронейтральним.
Цю модель далі розвинув Джозеф Томсон, припустивши, що всередині кулі обертаються електрони, число і конфігурація яких залежить від природи атома. Дж. Томсон не тільки пояснив умови рівноваги електронів усередині позитивно зарядженої кулі і випромінювання ними променевої енергії, а й дав у першому наближенні деякі пояснення періодичним закономірностям. Однак модель В. Томсона виявилася безпорадною при поясненнях закономірностей в спектрах елементів. Вона не могла пояснити найпростішу з них – формулу І. пальмера (1825-1898), який у 1885 році встановив зв'язок ліній в лінійчатому спектрі водню:
,
де R – стала Рідберга.
Пізніше було показано, що подібні серії лінії існують у спектрах інших елементів. Шведський фізик І. Рідберг (1834-1919) в своїх дослідженнях показав, що розташування ліній в спектрах підлягають закономірностям, які можна зобразити у вигляді формул, аналогічних формулі Бальмера для водню. І. Рідберг запропонував більш загальну формулу:
фізика вчений термодинаміка радіоактивність хімічний
Модель Дж. Томсона не змогла пояснити закономірностей в атомних спектрах, а також не дала задовільного тлумачення результатів дослідів по опроміненню тонких пластинок золота альфа-частинками.
У 1907 році Е. Резерфорд розпочав експерименти, пов’язані з проходженням альфа-частинок через речовину. Користуючись сцинтиляційними і газорозрядними лічильниками, Резерфорд встановив закони розсіювання альфа-частинок атомами золота і, зокрема, дав пояснення відхиленню незначної кількості альфа-частинок від свого початкового напряму руху при проходженні через пластинки золота. Ці відхилення були результатами зіткнень альфа-частинок з масивним тілом, що міститься всередині атома, діаметр якого становить одну десятитисячну частину діаметра атома. В 1909 році Резерфорд таким чином відкрив ядро атома, а в 1911 році – запропонував планетарну модель атома, згідно з якою ядро являє собою маленьку, але масивну частинку, розташовану в центрі атома, а навколо нього по орбітах обертаються легкі електрони атома.
Ядерну модель атома Резерфорда у 1913 році доповнив Нільс Бор (1885-1962), який на основі ідей Планка про кванти енергії встановив відомі постулати, що визначили основні властивості електронної оболонки атома і лягли в основу квантової теорії будови атома. Теорія Бора вперше дала вичерпне пояснення дискретності енергетичного спектра атомів, встановила їх розміри, пояснила комбінаційний принцип в спектроскопії, дала завершену кількісну теорію спектральних ліній водню і пояснила періодичну систему елементів Менделєєва.
В 1913 році учень Е. Резерфорда – англійський фізик Г. Мозлі (1887-1915) встановив зв'язок частоти в спектрі рентгенівського випромінювання з порядковим номером елемента, що випускає це випромінювання. Цим самим було показано, що періодичний закон Д. І. Менделєєва є основним законом фізики речовини, фізики атома.
3. Підсумкова частина
Розвиток природничих і передусім фізики на межі ХІХ і ХХ століття поставив ряд складних філософських проблем, викликаних корінними перетвореннями самих основ класичної фізики. Саме в цей період були відкриті рентгенівські промені і електромагнітна теорія світла, явища фотоефекту і радіоактивність, електронна структура матерії і перша елементарна частинка – електрон, відкриті кванти, сформульована теорія відносності, якав встановила нові, точніші просторово-часові співвідношення тощо.
Рекомендована література