Учебное пособие: Системы линейных уравнений и неравенств

Пусть число уравнений системы (1) равно числу переменных, т.е. m=n. Тогда матрица системы является квадратной, а ее определитель Δ=|A| называется определителем системы.

(1) уравнение можно записать в матричном виде

А*Х=B (6)

, , .

Умножая слева обе части матричного равенства (6) на матрицу А-1 ,получим А-1 (АХ)=А-1 В. Так как А-1 (АХ)=( А-1 А)Х=ЕХ=Х,то решением системы методом обратной матрицы будет матрица-столбец

Х=А-1 *B (7).

Система n линейных уравнений с n переменными

Решение системы n линейных уравнений с n переменными находять ниже укаженными методами:

1) Метод обратной матрицы;

2) Формула Крамера;

3) Метод Гаусса.

Теорема Кронекер – Капелли. Система m линейных уравнений с n переменными

Теорема Кронекера—Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы.

Для совместных систем линейных уравнений верны следующие теоремы.

1. Если ранг матрицы совместной системы равен числу переменных, т.е. r=n, то система (1) имеет единственное решение.

2. Если ранг матрицы совместной системы меньше числа переменных, т.е. r<n, то система (1) неопределенная и имеет бесконечное множество решений.

Системы линейных однородных уравнений

Система mлинейных уравнений с n переменными называется системой линейных однородныхуравнений, если все их свободные члены равны нулю. Такая система имеет вид:

(8)

Система линейных однородных уравнений всегда совместна, так как она всегда имеет, по крайней мере, нулевое (или тривиальное) решение (0; 0; ...; 0).

Систему (8) можно записать а виде:

А*Х=0 (9).

Если в системе (8) m=n, а ее определитель отличен от нуля, то такая система имеет только нулевое решение, как это следует из теоремы и формул Крамера. Ненулевые решения, следовательно, возможны лишь для таких систем линейных однородных уравнений, в которых число уравнений меньше числа переменных или при их равенстве, когда определитель системы равен нулю.

Иначе: система линейных однородных уравнений имеет ненулевые решения тогда и только тогда, когда ранг ее матрицы коэффициентов при переменных меньше числа переменных, т.е. при r(A)<n.

К-во Просмотров: 204
Бесплатно скачать Учебное пособие: Системы линейных уравнений и неравенств