Учебное пособие: Средние величины оценка разнообразия признака в вариационном ряду
ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Медицинский институт
Кафедра гигиены, общественного здоровья и здравоохранения
( зав. кафедрой к.м.н. А.П. Дмитриев)
СРЕДНИЕ ВЕЛИЧИНЫ, ОЦЕНКА РАЗНООБРАЗИЯ ПРИЗНАКА В ВАРИАЦИОННОМ РЯДУ.
Учебно-методическое пособие для студентов
(VШ семестр)
г. Пенза, 2005.
Информационный лист:
Учебно-методическое пособие “Средние величины, оценка разнообразия признака в вариационном ряду.” подготовлено кафедрой гигиены, общественного здоровья и здравоохранения Пензенского государственного университета (заведующий кафедрой, к.м.н. Дмитриев А.П.).
В составлении принимали участие: к.м.н. Зубриянова Н.С. , Дмитриев А.П. (ответственный за подготовку Зубриянова Н.С.).
Учебно-методическое пособие подготовлено в соответствии с «Программой по общественному здоровью и здравоохранению ” для студентов лечебных факультетов высших медицинских учебных заведений”, разработанной Всероссийским учебно-научно-методическим Центром по непрерывному медицинскому и фармацевтическому образованию Минздрава России и УМЦпкп и утвержденной Руководителем департамента образовательных медицинских учреждений и кадровой политики Н.Н. Володиным в 2000 г.
Данное Учебно-методическое пособие подготовлено для студентов для самостоятельной подготовки к практическим занятиям по указанной теме.
Тема: Средние величины, оценка разнообразия признака в вариационном ряду.
Оценка достоверности
Вопросы :
- методы расчета средних величин
- оценка достоверности относительных и средних величин
Продолжительность занятия : 4 часа
Самостоятельная работа : лабораторная работа №6
Теоретическая часть.
Средние величины
В клинической медицине и практике здравоохранения мы часто сталкиваемся с признаками, имеющими количественную характеристику (рост, число дней нетрудоспособности, уровень кровяного давления, посещения поликлиники, численность населения на участке и т.д.). Количественные значения могут быть дискретными или непрерывными. Пример дискретного значения – число детей в семье, пульс; пример непрерывного значения – артериальное давление, рост, вес (число может быть дробным, переходящим в следующее)
Каждое числовое значение единицы наблюдения называется вариантой (x). Если все варианты построить в возрастающем или убывающем порядке и указать частоту каждой варианты (p), то можно получить так называемый вариационный ряд .
Вариационный ряд, имеющий нормальное распределение, графически представляет собой колокол (гистограмма, полигон).
Для характеристики вариационного ряда, имеющего нормальное распределение (или распределение Гаусса-Ляпунова), всегда используются две группы параметров:
1.Параметры, характеризующие основную тенденцию ряда: средняя величина (`x ), мода(Мо), медиана (Ме).
2.Параметры, характеризующие рассеянность ряда: среднее квадратичное отклонение (d), коэффициент вариации (V).
Средняя величина (`x ) – это величина, определяющая одним числом количественную характеристику качественно однородной совокупности.
Мода (Мо) – чаще всего встречающаяся варианта вариационного ряда.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--