Учебное пособие: Усилительные каскады переменного тока на биполярных транзисторах

Класс усиления D, соответствует режиму работы транзисторного каскада, при котором в установившемся режиме усилительный элемент (биполярный транзистор) может находиться или в состоянии включено (режим насыщения биполярного транзистора) или выключено (режим отсечки биполярного транзистора). КПД такого усилительного каскада близок к единице.

Для реализации данного режима работы входное напряжение должно принимать значение либо меньшее порогового напряжения Uбэ пор, либо большее Uвх мах, соответствующего границе активного режима работы и режима насыщения. Более подробно особенности построения усилительных каскадов, использующих режим класса D, будут рассмотрены в разделах, посвященных импульсной технике.

Следует отметить, что, строго говоря, КПД каскада, работающего в режиме класса D, только теоретически может быть равен единице. На практике в таких каскадах всегда присутствуют три составляющие потерь, природа которых кроется в неидеальности используемой элементной базы. Это потери в насыщенном состоянии, потери в режиме отсечки и потери на переключение, обусловленные движением рабочей точки на выходных характеристиках транзистора из отсечки в насыщение и обратно. Однако при правильном проектировании эти потери всегда меньше потерь в других классах усиления.

Рассмотрим построение основных схем каскадов, работающих в режиме класса А. Схемотехника усилителей других классов будет рассмотрена в разделах, посвященным усилителям мощности и импульсной техники. Начнем с анализа метода расчета схем, содержащих нелинейный элемент.

Метод расчета схем с нелинейным элементом

Известно, что путем эквивалентных преобразований любые схемы могут быть сведены к последовательному включению двух элементов. При этом характеристики элементов в общем случае могут иметь произвольный характер. Это могут быть либо два линейных элемента, либо линейный и нелинейный элементы, либо два нелинейных элемента. При этом один или оба из них могут быть управляемыми. Большая часть усилителей содержит один управляемый нелинейный элемент (транзистор) и пассивные линейные элементы – резисторы. Наличие емкостей и индуктивностей на данном этапе не учитывается. Поэтому путем преобразований схема усилителя может быть сведена к схеме, изображенной на рисунке 4.2, а.

На схеме изображен нелинейный элемент НЭ, который через резистор R подсоединен к источнику напряжения Еп. Нелинейный элемент управляется входным сигналом Uвх. Через него протекает ток Iнэ и возникает парение напряжения Uнэ. На основании закона Кирхгофа имеем:

Еп = UR + Uнэ

Расшифровывая величину UR на основе закона Ома, получаем:

Еп = Iнэ R + Uнэ. (4.1)

Рисунок 4.2. Эквивалентная схема цепи с нелинейным элементом

В системе координат Uнэ и Iнэ [2] выражение (4.1) представляет собой линию (рисунок 4.2, б):

Iнэ = –Uнэ / R + Еп / R. (4.2)

Она проходит через точки на осях координат Еп и Еп / R. Из этого следует, что при определенном токе нелинейного элемента падение напряжения на нем всегда будет соотвествокать значению, определяемому по нагрузочной прямой вне зависимости от параметров и характеристик нелинейного элемента (см. связь между IнэР и UнэР на рисунке 4.2, б). Эта линия носит наименования линии назрузки или нагрузочной прямой. Связь с характеристиками нелинейного элемента определяется зависимостью тока НЭ от входного управляющего сигнала Uвх.

При анализе режимов работы аналоговых и импульсных электронных устройств, когда на входе цепи действуют одновременно постоянная и переменная составляющие тока, пользуются методом наложения для нелинейных цепей. В этом случае сначала ведут расчет цепи с учетом только источников постоянного тока, определяя режим работы устройства на постоянном токе. Затем уже для этих характеристик (без учета постоянных составляющих тока) рассчитывают режим работы устройства на переменном токе. На практике постоянные составляющие электрического сигнала усилителя, как правило, называют напряжением и током покоя.

Усилитель ОЭ с фиксированным током базы

Напомним, что наименование «усилитель ОЭ» означает, что это усилитель, в котором используется биполярный транзистор (Э – означает эмиттер). Причем последний включен так, что эмиттер является общим (буква О в наименовании) для входной цепи и цепи нагрузки. Простейшая схема такого усилителя (усилительного каскада в многокаскадном усилителе) приведена на рисунке 4.3, а. Соединение эмиттера к входной цепи и цепи нагрузки в схеме видно явно (через общую точку, «землю»).

Рисунок 4.3. Усилитель с фиксированным током базы

Для обеспечения режима работы класса А, необходимо установить соответствующие этому режиму токи электродов. Наиболее просто это получается, если задаться расположением рабочей точки, точки покоя, примерно на середине линии нагрузки (рисунок 4.3, б). Линия нагрузки данной схемы проводится в системе координат выходной характеристики пранзистора Uкэ и Iк через точки на осях координат Еп и Еп / Rк. Рабочая точка Р характеризуется коллекторным током IкР и напряжением на коллекторе UкэР.

На основании выражения (4.1), с учетом используемых обозначений рисунка 4.3, имеем:

Еп = URк + UкэР.

Откуда, для получения выбранного распределения падений напряжений величина сопротивления

. (4.3)

На рисунке 4.3, б нанесены выходные характеристики используемого транзистора VT. Из них следует, что для того, чтобы в цепи коллектора протекал ток IкР в цепи базы должен протекать ток IбР. Для получения этого тока в цепи базы должен стоять резистор сопротивлением

, (4.4)

где UбэР – напряжение на базе, при котором через базу идет ток IбР. Это напряжение определяется по входной характеристике используемого транзистора. Однако, в связи с тем, что обычно

UбэР << Еп, (4.5)

то при определении сопротивления резистора в цепи базы пользуются более простой формулой:

.

К-во Просмотров: 392
Бесплатно скачать Учебное пособие: Усилительные каскады переменного тока на биполярных транзисторах