Учебное пособие: Усилительные каскады переменного тока на биполярных транзисторах
Необходимо отметить, что расчет выделяемой мощности для усилителя класса А ведется по напряжению и току покоя. Их изменение в результате воздействия сигнала не учитывается, т.к при увеличении тока коллектора уменьшается падение напряжения и наоборот.д.ля усилителей, работающих в режиме иных классов, в качестве расчетной величины РкР берется средняя мощность.
Справочное значение рассеиваемой мощности Рк должно быть определено с учетом температуры окружающей среды, в которой предполагают использовать разрабатываемый усилитель.
Приходящий переменный сигнал изменяет ток и напряжение транзистора, однако, подходы к их допустимым максимальным величинам различны, в связи с отличием в механизме процессов, приводящих к разрушению транзистора. Вероятность пробоя транзистора увеличивается при увеличении скорости нарастания напряжения на коллекторе. Поэтому предельно допустимое напряжение коллектор-эмиттер должно удовлетворять неравенству:
Uкэ = Кзап * Еп. (4.12)
Коэффициент запаса по напряжению обычно выбирают из тех же предпосылок, что и коэффициент запаса по мощности.
Процесс выхода транзистора из строя в связи с прохождением через него значительного тока иной, инерционный и напоминает процесс разрушения от разогрева в результате выделения электрической мощности. Поэтому допустимый коллекторный ток определяют исходя из тока покоя (или среднего тока для иных классов режима работы):
Iк = Кзап * IкР,(4.13)
однако коэффициент запаса по току обычно выбирают несколько большим, чем в предыдущих случаях.
Стабилизация режима работы усилительных каскадов
Простота схемы с фиксированным током базы привели к тому, что она является одной из самых распространенных. Однако ей присущ ряд недостатков, устранение которых привело к созданию и использованию более сложных схем.
Как видно из приведенного выше расчета, определение величины сопротивления резистора в цепи базы произведено на основании выбранного режима работы выходной цепи транзистора и его характеристик, которые обобщенно можно выразить статическим коэффициентом передачи тока h21Э. Вместе с тем после выбора номинала резистора Rб ток базы практически не зависит от параметров транзистора (см. выражение (4.6)). Он однозначно задан (зафиксирован) сопротивлением использованного резистора Rб и напряжением источника питания. Отсюда возникло и название схемы. В то же время, ток коллектора определяется не только этим током базы, но также и параметрами транзистора. А они могут не совпадать с теми, которые были использованы при расчете. Поэтому ток коллектора практически всегда не совпадает с ожидаемым, что, в свою очередь, приводит к иному напряжению на коллекторе п сравнению с ожидаемым, т.е. к иному режиму работы каскада.
Рассмотрим пример. Пусть в усилителе по схеме рисунка 36.3, а напряжение питания Еп = 15 В и использован транзистор КТ315Б. Его статический коэффициент передачи тока, который приводится в справочнике, находится в пределе 50 – 250. Среднее значение h21Э ср = 150. Зададимся параметрами точки покоя:
IкэР = 10 мА; UкэР = 7,5 В.
Проведя расчеты по методике, изложенной в предыдущем параграфе, получаем:
Ом; ;
Ом.
В соответствии с рядом номиналов резисторов, принимаем Rк = 750 Ом, Rб = 22 кОм. Несовпадение номинала Rб по сравнению с расчетным значением приведет к некоторому увеличению тока покоя базы (IбР » 682 мкА) изменению параметрами расчетной точки покоя:
IкР = 6,82 10-4 * 150 = 10,2 мА; UкэР = 15 – 750 * 10,2 10-2 = 7,35 В.
Изменения параметров рабочей точки незначительные. Однако, если при изготовлении конкретного экземпляра усилителя будет использован транзистор с предельными величинами статический коэффициент передачи тока, то режим может измениться существенно. Например, при использовании транзистора с h21Э = 50
IкР = 6,82 10-4 * 50 = 3,41 мА; UкэР = 15 – 750 * 3,41 10-3 » 12,4 В.
Если же h21Э = 250, то
IкР = 6,82 10-4 * 250 » 17 мА; UкэР = 15 – 750 * 17 10-3 » 2,3 В.
Как мы видим, изменения режима работы значительны.
Конечно, можно было бы уменьшить расхождения либо в результате предварительного (до проведения расчета) измерения статического коэффициента передачи тока индивидуально каждого экземпляра транзистора, либо путем подбора (регулировки) величин сопротивления резисторов. Не говоря уж об усложнении работы, это не приводит к существенному положительному результату, в связи с наличием так называемых «дестабилизирующих факторов». К ним обычно относят: изменения температуры и других параметров окружающей среды, старения элементов схемы, нестабильностью источников питания и т.п. Они приводят к изменению параметров элементов схемы, изменению токов и напряжений, т.е. к изменению режима работы каскада.
К дестабилизирующим факторам, в первую очередь, следует отнести изменение температуры окружающей среды, вызывающей, во-первых, изменение обратного тока коллекторного перехода Iко, во-вторых, изменение напряжения эмиттерного перехода Uбэ транзистора, и, в – третьих, изменение его коэффициента передачи тока h21э. Все эти воздействия приводят к изменению коллекторного тока транзистора и, следовательно, изменению выходного напряжения усилительного каскада. Поэтому важнейшей задачей при проектировании транзисторных усилителей является обеспечение именно температурной стабилизации их режима работы. При таком подходе зачастую уменьшается влияние и других воздействий.
Рассмотрим схемные построения усилителей ОЭ, которые позволяют уменьшить воздействие дестабилизирующих факторов. Необходимо напомнить, что, несмотря на указанные выше недостатки, схему с фиксированным током базы очень широко используют. Это объясняется тем, что при малых амплитудах входного и выходного сигналов, смещение рабочей точки во многих случаях не имеет принципиального значения. Поэтому прежде чем браться за более сложную схему, необходимо проанализировать возможность использования простой.
Схема с фиксированным напряжением базы
Схема с фиксированным напряжением база-эмиттер приведена на рисунке 4.5. В этой схеме режим работы транзистора задается путем подачи постоянного смещающего напряжения на базу. Напряжение смещения формируется делителем напряжения источника питания на резисторах Rб1 и Rб2. Падение напряжения на резисторе Rб2, которое одновременно является напряжением эмиттерного перехода транзистора, должно быть таким, чтобы в базу поступал ток IбР (см. рисунок 4.4, а).
Через делитель идет ток Iд. Чем он больше, тем стабильнее схема, так как изменение тока базы будет слабо влиять на величину смещения. Однако следует иметь в виду, что ток делителя нельзя выбирать слишком большим, поскольку в делителе расходуется дополнительная энергия, и чем больше ток Iд, тем большее мощности источника питания будет расходоваться в этой вспомогательной цепи. Кроме того, в этом случае уменьшаются величины сопротивлений Rб1 и Rб2, что приводит к уменьшению входного сопротивления каскада и возрастанию нагрузки на источник сигнала. Обычно ток делителя выбирают в пределах (2...10) IбР.
Рисунок 4.5. Усилитель ОЭ с фиксированным напряжением базы