Учебное пособие: Усилительные каскады переменного тока на биполярных транзисторах
(4.14)
Стабильность работы схемы рисунка 4.5, а незначительно превосходит схему с фиксированным током базы, вместе с тем, имеет дополнительный резистор. Поэтому она не получила широкого распространения. Можно повысить ее стабильность, если вместо резистора Rб2 ввести диод. Известно, что при изменении температуры статический коэффициент передачи тока транзистора и падение напряжения на р-п переходе меняются в противоположных направлениях. Например, при повышении температуры h21Э возрастает, а падение напряжения на р-п переходе уменьшается. Поэтому, если изменение температур на этих элементах будет идентичным, то произойдет частичная термокомпенсация: уменьшение падения напряжения на р-п переходе при увеличении температуры приведет к уменьшению тока базы, что уменьшит влияние роста коэффициента передачи на режим работы каскада. При уменьшении температуры окружающей среды будет наблюдаться обратная картина.
Наиболее плодотворна реализация термокомпенсационной схемы в микроэлектронном исполнении, где элементы могут быть расположены на небольшом расстоянии друг от друга и произведена оптимизация их характеристик. Вариант схемы приведен на рисунке 4.5, б, где р-п переход образован эмиттерным переходом дополнительного транзистора VTд.
Схемные методы стабилизации
Простейшей и наиболее экономичной является коллекторная стабилизация, представленная на рисунке 4.6, а.
Рисунок 4.6. Усилитель ОЭ с коллекторной стабилизацией
Положение точки покоя обеспечивается током IбР, протекающим через резистор Rб. Величина Rб определяется по формуле
. (4.15)
Изменяется и выражение для определения Rк:
. (4.16)
Хотя, в связи с тем, что IкР >>IбР, получаемые величины практически не отличаются от вычисленных по формуле (4.3).
Принцип действия схемы стабилизации состоит в следующем. С ростом, например, температуры, IкР начинает расти, что приводит согласно (4.1), к уменьшению UкэР. Так как сопротивление резистора Rб постоянно, то ток IбР начнет уменьшаться. Ток коллектора и ток базы транзистора связаны между собой через статический коэффициент передачи тока. Следовательно, уменьшение тока покоя базы будет препятствовать увеличению току покоя коллектора IкР, и режим работы каскада практически не изменится. При уменьшении температуры окружающей среды будет наблюдаться обратная картина.
В схеме коллекторной стабилизации рисунка 4.6, а возникает отрицательная параллельная обратная связь по переменному напряжению, которая уменьшает коэффициент усиления и входное сопротивление каскада. Для устранения этой связи Rб делят на две части, между ними и корпусом включают конденсатор Cб (рисунок 4.6, б). Емкость конденсатора должна быть такой, чтобы на самой нижней частоте усиления его сопротивление переменному току было существенно меньше входного сопротивления каскада Rвх:
,(4.17)
где fн – нижняя частота сигнала.
Схема коллекторной стабилизации эффективна лишь при большом падении напряжения на коллекторной нагрузке (порядка 0,5 Ек и выше) и изменениях температуры в пределах 20 – 30°С.
Более качественную стабилизацию режима работы транзисторного усилительного каскада обеспечивает схема эмиттерной стабилизации, представленная на рисунке 4.7.
Рисунок 4.7. Усилитель ОЭ с эмиттерной стабилизацией
Принцип действия схемы состоит в следующем. Если сделать обход по контуру резистор Rб2 – эмиттерный переход транзистора – резистор RЭ, то можно записать:
,(4.18)
где IэР – ток эмиттера в состоянии покоя (IэР »IкР).
С изменением температуры окружающей среды, например, ее ростом, возрастают токи покоя коллектора IкР и эмиттера (IэР). При этом увеличивается падение напряжения на резисторе RЭ и в соответствии с выражением (4.18) уменьшается напряжение на эмиттерном переходе. Ток базы IбР уменьшается, что ограничивает рост тока IкР.
Для устранения последовательной отрицательной обратной связи по току, которая возникает в схеме при подаче входного сигнала переменного тока, резистор RЭ шунтируется конденсатором СЭ.
Падение напряжения на резисторе RЭ выбирают в пределе
URэ = (0,05 – 0,2) Еп (4. 19)
Откуда (после выбора URэ)
. (4. 20)
Величина шунтирующей емкости эмиттерного конденсатора находят из соотношения: