Учебное пособие: Задачи в школьном курсе математики
3. Проверка симметричности ответа, если в условии задачи какие-то данные симметричны. Например, если уравнения, входящие в систему, симметричны относительно переменных, то и найденные значения различных переменных должны быть равны.
4. Проверка ответа по здравому смыслу. Например, скорость пешехода не может быть равной 15 км/ч, количество рабочих не может быть дробным и т. д.
5. Проверка с помощью грубой прикидки. При этом данные грубо округляются и выясняется порядок возможного результата.
6. Проверка с помощью обратной задачи или с помощью другого способа решения.
7. Проверка текстовых задач, решенных с помощью составления уравнения, по смыслу. При этом необходимо, чтобы все промежуточные величины, зависящие от х, которые появляются в ходе решения задачи, имели бы смысл при полученном значении переменной.
Приведенные формы проверки, кроме 6, не дают полной гарантии правильно найденного и выполненного решения, но, тем не менее, с ними полезно ознакомить учащихся.
В работах, посвященных самоконтролю, предлагается следующая этапность в формировании самоконтроля: контроль за деятельностью учителя, взаимоконтроль - контроль учащихся за деятельностью товарища, контроль за собственной деятельностью. При этом речь, как правило, идет о контроле над исполнительской деятельностью. Такая последовательность имеет достаточное основание. Деятельность контроля состоит в сопоставлении, в сравнении двух действий: своего и контролируемого, а не просто в выполнении действия. Еще труднее посмотреть под новым углом зрения на свое исполнение действия.
3. Классификация задач. Роль алгоритмов и эвристик в обучении решению задач
В современной методической и психологической литературе принята классификация задач. По характеру требования:
— задачи на доказательство;
— задачи на построение;
— задачи на вычисление.
По функциональному назначению:
— задачи с дидактическими функциями;
— задачи с познавательными функциями;
— задачи с развивающими функциями.
По величине проблемности:
— стандартные;
— обучающие;
— поисковые;
— проблемные.
По методам решения:
— задачи на геометрические преобразования;
— задачи на векторы и др.
По числу объектов в условии задачи и связей между ними:
— простые;
— сложные.
По компонентам учебной деятельности:
— организационно-действенные;