1. В правильной шестиугольной призме ABCDEF все ребра равны 2. Найти расстояние от точки B до прямой A1F1   2. Высота цилиндра 3, а радиус основания 13. Площадь сечения цилиндра плоскостью, проходящей параллельно оси цилиндра, ...

1. В правильной шестиугольной призме ABCDEF все ребра равны 2. Найти расстояние от точки B до прямой A1F1   2. Высота цилиндра 3, а радиус основания 13. Площадь сечения цилиндра плоскостью, проходящей параллельно оси цилиндра, равна 72. Найти расстояние от плоскости сечения до центра.   Лучший ответ дам за решение двух задач
Гость
Ответ(ы) на вопрос:
Гость
1. расстояние от точки B до прямой A1F1 это длина перпендикуляра ВР к прямой A1F1, По теореме о трех перпендикулярах его проекция В1Р перпендикулярна к прямой A1F1. Из треугольника А1В1Р надем В1Р: угол В1А1Р равен 60°, т к внутренний угол А1 правильного шестиугольника равен 120°, А1В1 =2, тогда В1Р=В1А1*sin60°=2*√3/2=√3. Из прямоугольного треугольника ВВ1Р найдем гипотенузу ВР: ВР=√(ВВ1^2+B1P^2)=√(3+4)=√7. 2.  ОН - расстояние от плоскости сечения до центра, т к площадь сечения цилиндра плоскостью, проходящей параллельно оси цилиндра, равна 72, а высота цилиндра 3, то АВ=72:3=24, АН=12, ОА=R=13, ОН=√(OA^2-AH^2)=√(169-144)=√25=5
Не нашли ответ?
Ответить на вопрос
Похожие вопросы