2. На расстоянии 9 м от центра шара проведено сечение,длина окружности которого равна 24пи см.Найдите объем меньшего марового сегмента, отсекаемого плоскостью сечения.
2. На расстоянии 9 м от центра шара проведено сечение,длина окружности которого равна 24пи см.Найдите объем меньшего марового сегмента, отсекаемого плоскостью сечения.
Ответ(ы) на вопрос:
Гость
наверное имелось ввиду на расстоянии 9 см Решение: объем шарового сегмента равен
V=1\3*pi*H^2*(3*R-H) где H – высота шарового сегмента R - радиус шара радиус окружности сечения равен r=C\(2*pi)=24*pi\(2*pi)=12 cм= Радиус шара равен по теореме Пифагора R^2=r^2+d^2 R^2=9^2+12^2=15^2 R=15 H=R-d=15-9=6 объем шарового сегмента равен V=1\3*pi*6^2*(3*15-6)=468*pi или 468*3.14=1 469.52 см^3
Не нашли ответ?
Похожие вопросы