24x^3-26x^2+9x-1=0 решить уравнение

24x^3-26x^2+9x-1=0 решить уравнение
Гость
Ответ(ы) на вопрос:
Гость
Есть теорема, которая гласит, что если многочлен с целыми коэффициентами имеет рациональный корень x0=m/n (m/n - не сократимая дробь), то свободный член делится без остатка на m, а старший коэффициент многочлена делится без остатка на n.  Поищем сначала целые корни. Из теоремы следует, что они должны быть делителем 1. То есть это либо 1 либо -1. Ни одно из этих значений не подходит. Ищем рациональные корни. Корни, очевидно, являются отрицательными числами, поэтому числитель дроби будет равен -1. Выпишем положительные делители 24, не считая 1:  2, 3, 4, 6, 8, 12, 24. Теперь проверим являются ли корнями дроби: -1/2, -1/3, -1/4, -1/6, -1/8, -1/12, -1/24.  Проверяя первые три дроби получим, что они являются корнями. x=-1/2 x=-1/3 x=-1/4 Других корней нет, так как уравнение третьей степени с вещественными коэффициентами вообще не может иметь более 3 корней (вещественных или комплексных). Все.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы