3tgx-3ctgx+8=0 sin2x+4cos²x=1 10cos²x-9sin2x=4cos2x-4 решите все три примера пожалуйста
3tgx-3ctgx+8=0
sin2x+4cos²x=1
10cos²x-9sin2x=4cos2x-4
решите все три примера пожалуйста
Ответ(ы) на вопрос:
Гость
1) 3tgx-3ctgx+8=0
tgx=t
3t-3/t+8=0 ⇔3t²+8t-3=0
t1=[-4-√(16+9)]/3=-3 tgx=-3 x=-arctg3 +πn, n∈Z
t2=[-4+√(16+9)]/3=1/3 tgx=1/3 x=arctg(1/3) +πn, n∈Z
2) sin2x+4cos²x=1
sin2x+2(1+cos2x)=1 sin2x+2cos2x=-1
[1/√(1+4)]sin2x+[2/√5]cos2x=-1/√5
cos(2x-φ)=-1/√5, φ=arctg(1/2)
2.1)2x-φ= (π-arccos(1/√5))+2πn x=[π-arccos(1/√5)+2πn+φ]/2
2.2)2x-φ= -(π-arccos(1/√5))+2πn x=[-π+arccos(1/√5)+2πn+φ]/2
3) 10cos²x-9sin2x=4cos2x-4
5(1+cos2x)-9sin2x-4cos2x=-4
cos2x-9sin2x=9
[1/√(1+81)]cos2x-[9/√82]sin2x=9/√82
cos(2x+φ)=9/√82 , φ=arctg(-9)
3.1)2x+φ= (arccos(9/√82))+2πn x=[arccos(9/√82)+2πn-φ]/2
3.2)2x+φ= -(arccos(9/√82))+2πn x=[arccos(9/√82)+2πn-φ]/2
Не нашли ответ?
Похожие вопросы