6/(x+1)(x+2)+8/(x-1)(x+4)=1

6/(x+1)(x+2)+8/(x-1)(x+4)=1
Гость
Ответ(ы) на вопрос:
Гость
(x+1)*(x+2) = x^2 +3x+2; (x-1)*(x+4) = x^2+3x - 4; x^2 + 3x = y; (6/(y+2)) + (8/(y-4)) = 1; y не=-2 и y не=4; 6*(y-4) + 8*(y+2) = (y+2)*(y-4); 6y-24 + 8y +16 = y^2 - 2y -8; y^2 -y*(2+8+6) - 8 + 24 -16 = 0; y^2 - 16y =0; y*(y-16) = 0; y=0 или y-16=0; 1) y=0; <=> x^2+3x = 0; <=> x*(x+3) = 0; <=> x1=0; или x2=-3. 2) y-16 = 0; <=> x^2+3x - 16 = 0; D = 3^2 + 4*16 = 9+64 = 73; x3 = (-3+(V73))/2; x4 = (-3-(V73))/2.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы