8sin^2x-12cosx+7=0 Решите тригонометрическое уравнение срочно
8sin^2x-12cosx+7=0 Решите тригонометрическое уравнение срочно
Ответ(ы) на вопрос:
Гость
8sin^2x-12cosx+7=08(1-cos^2x)-12cosx+7=08-8cos^2x-12cosx+7=0-8cos^2x-12cosx+15=0заменим cos x =a-8a^2-12a+15=0D=144+480 = 624, корень из D = 4*( корень из 39)a=(12+-корень из D)/-16a1=(12+4*корень из 39)/-16 = если грубо посчитать (примерно оценить), то это больше, чем 36/-16, т.е. по модулю больше 2, нам не подходит, т.к. a = cos x, значит должно быть в промежутке [-1; 1].a2= (12-4* корень из 39)/(-16) = 4(3-корень из 39)/(-16)=(3-корень из 39)/(-4)cos x = (3-корень из 39)/(-4)х=+-arccos((3-корень из 39)/(-4)) + 2пn
Не нашли ответ?
Похожие вопросы