А) Постройте график функции y=-x^2+4 б) При каких значениях x функция принимает отрицательные значения?

А) Постройте график функции y=-x^2+4 б) При каких значениях x функция принимает отрицательные значения?
Гость
Ответ(ы) на вопрос:
Гость
а) график во вложении  б) [latex]y\ \textless \ 0[/latex] при x∈(–∞; –2)∪(2; +∞)
Гость
Выясним вид и расположение графика функции y=-x²+4 относительно начала координат. График - парабола. Поскольку коэффициент перед х² отрицательный, то она располагается ветвями вниз, следовательно большинство её значений отрицательны. Далее, y(-x) = -(-x)²+4 = -x²+4 = y(x), следовательно, функция четная и её график будет симметричен относительно оси Y Чтобы узнать, принимает ли функция неотрицательные значения, приравняем y нулю. Мы получим уравнение -х²+4=0. Если существуют действительные корни этого уравнения, то они будут точками, в которых график функции пересекает ось Х, а при значениях х, находящихся между этими корнями функция будет положительной. -х²+4=0; х²=4 → х=√4 Корнями будут х₁=-2, х₂=2 Итак, график функции - парабола, направленная ветвями вниз, симметричная относительно оси Y и пресекающая ось Х в точках -2 и 2. В силу симметрии этих точек и характера функции мы можем утверждать, что её максимум достигается в точке х = (-2+2)/2 = 0. Значение максимума у(0) равно -0²+4 = 4. Понятно, что функция принимает отрицательные значения вне интервала между корнями, т.е. x<-2 и x>2. В другой форме записи x ∈ (-∞;-2) ∪ x ∈ (2;∞) График функции дан во вложении.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы