АЛГЕБРА!!!! Найти корень (корни) уравнения log133(x^2-5x)=2log133(3x-21)
АЛГЕБРА!!!! Найти корень (корни) уравнения
log133(x^2-5x)=2log133(3x-21)
Ответ(ы) на вопрос:
Гость
log133(x^2-5x)=2log133(3x-21)
Воспользуемся логарифмом степени, внесём 2 в подлогарифмическое выражение: log133(x^2-5x)=log133(3x-21)²
Уравняем подлогарифмические выражения: х² - 5х = 9х² - 126х + 441
-8х² +121х -441 = 0
D = 121² - 4·(-8)·(-441) = 14641 - 14112 = 23²
х₁ = 9 х₂ = 49/8
Проверка.
х₁ = 9, log₁₃₃(9² - 5·9) = 2log₁₃₃(3·9 - 21)
log₁₃₃36 = 2log₁₃₃6 - верно
х₂ = 49/8, log₁₃₃( (49/8)² - 5·49/8) = 2log₁₃₃(3·49/8 - 21)
log₁₃₃( 441/64) = 2log₁₃₃(147/8 - 21) - не имеет смысла, так как
147/8 - 21 <0.
ответ: 9
Не нашли ответ?
Похожие вопросы