Биссектрисы тупых углов при основании трапеции пересекаются на другом ее основании.Докажите,что сумма боковых сторон трапеции равна большему основанию.

Биссектрисы тупых углов при основании трапеции пересекаются на другом ее основании.Докажите,что сумма боковых сторон трапеции равна большему основанию.
Гость
Ответ(ы) на вопрос:
Гость
пусть дана трапеция АВСД с большим основанием АД. Тогда биссетрисы тупых углов В и С будут пересекаться в точке Е и точка Е будет принадлежать основанию АД. По определению трапеции: ВС параллельно АД, поэтому угол ЕВС равен углу ВЕА как внутренние накрест лежащие при параллельных прямых ВС и АД и секущей ВЕ. Аналогично доказывается равенство углов ВСЕ и СЕД. Рассмотрим треугольник АВЕ. Угол АВЕ = углу ВЕА (ВЕ - биссектриса) ⇒ треугольник АВЕ - равнобедренный ⇒ АВ = АЕ, аналогично находим, что треугольник СЕД - равнобедренный и СД = ЕД Рассмотрим сумму АВ + СД = АЕ + ЕД = АД, что и требовалось доказать
Не нашли ответ?
Ответить на вопрос
Похожие вопросы