Биссектрисы углов A и D трапеции ABCD пересекаются в точке M, лежащей на стороне BC. Докажите, что точка M равноудалена от прямых AB, AD и CD.

Биссектрисы углов A и D трапеции ABCD пересекаются в точке M, лежащей на стороне BC. Докажите, что точка M равноудалена от прямых AB, AD и CD.
Гость
Ответ(ы) на вопрос:
Гость
там доказательства- одна строчка продлим прямые АВ и ДС до пересечения, получим треугольник. А где лежит центр вписанной окружности? Правильно, на пересеч. биссектрис.  Это по условию т.М.  А как расположен этот центр? Правильно, равноудален от всех сторон треугольника. Что и требовалось доказать.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы