Ответ(ы) на вопрос:
Гость
используя формулу cosAcosB=1/2((cos(A-B)+cos(A+B)), получаем cos7xcos4x=(cos11x+cos3x)*1/2, cos6xcos3x=(cos9x+cos3x)*1/2 и уравнение принимает вид cos11x-cos9x=0. используя формулы сложения аргументов получаем cos11x=cos(10x+x)=cos10xcosx-sin10xsinx, cos9x=cos(10x-x)=cos10xcosx+sin10xsinx. после вычитания второго из первого получаем -2sin10xsinx=0 или sin10xsinx=0. данное равенство выполняется когда или sinx=0 или sin10x=0. в обоих случаях решение х=0.
Не нашли ответ?
Похожие вопросы