Дан параллелограмм ABCD. На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что АМ = CN. Докажите, что MBND – параллелограмм.
Дан параллелограмм ABCD. На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что АМ = CN. Докажите, что MBND – параллелограмм.
Ответ(ы) на вопрос:
Доказываешь, что два треугольник AMD и CNB: АМ = CN по условию, АВ=СВ, т.к. это стороны параллелограмма.
Диагональ ВD исходного параллелограмма АВСD осталась прежней, диагональ AC с каждой стороны увеличилась на одинаковую длину. Точка пересечения диагонали ВD и диагонали МN осталась прежней и делит их, как и в исходном четырехугольнике, пополам.
Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то такой четырехугольник – параллелограмм.
Не нашли ответ?
Похожие вопросы