Дана функция f(x)=x^3+6x^2-15x+a. найдите значение параметра а, при котором наименьшее значение функции f(x) на отрезке [-2;2] равно 8.

Дана функция f(x)=x^3+6x^2-15x+a. найдите значение параметра а, при котором наименьшее значение функции f(x) на отрезке [-2;2] равно 8.
Гость
Ответ(ы) на вопрос:
Гость
f(x)=x^3+6x^2-15x+a f([-2;2])max=8 f'(x)=3x^2+12x-15 3x^2+12x-15=0 x=-5, x=1 x=-5 по любому зайдет за рамки отрезка. Так что делаем акцент на x=1 1+6-15+a=8 a=16 Стоит заметить что функция f(x) уменьшается от x=-5 до x=1 а далее начинает расти. Так что наш ответ единственный.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы