Дано: треугольник MKN-равнобедренный, боковые стороны МК=КN=26, основание MN=20. Найдите радиус окружности ОЕ, вписанный в этот треугольник.
Дано: треугольник MKN-равнобедренный, боковые стороны МК=КN=26, основание MN=20. Найдите радиус окружности ОЕ, вписанный в этот треугольник.
Ответ(ы) на вопрос:
Решение:
1)MN-касат.
OE-r-следовательно KE-высота, медиана, биссектриса.
КЕ-медиана=>МЕ=ЕN=20:2=10
2)OD-r
MK-касат=>треу. MEK ~ DOK.(по двум углам)
4)MN и MK-касат.,MD-10=>ME=MD (по двум касат.)
DK=MK-MD=26-10=16см.
5) треу. MKE-прямоуг.
MK^2=ME^2+EK^2(теорема Пифагора. )
EK=корень ME^2-MK^2=корень из 676-100=корень из 576=24.
6)Отношение.
10/OD=24/16=26/OK
24/16=26/OK
24×OK=16×26
24OK=416
OK=416:21
OK=17целых1/3
OE=EK-OK=24-17целых1/3=6целых1/3
Не нашли ответ?
Похожие вопросы