Даны уравнения двух смежных сторон параллелограмма x+y+5=0, x-4y=0. Найти уравнение двух других сторон, если известна точка пересечения его диагоналей P= (2;-2). Пожалуйста с полным решением!

Даны уравнения двух смежных сторон параллелограмма x+y+5=0, x-4y=0. Найти уравнение двух других сторон, если известна точка пересечения его диагоналей P= (2;-2). Пожалуйста с полным решением!
Гость
Ответ(ы) на вопрос:
Гость
РЕШЕНИЕ 1) Приводим данные уравнения к каноническому виду - Y=kX+b. X+Y+5=0 преобразуем в a) Y= -X - 5. X-4Y=0 преобразуем в б)  Y = 1/4*X 2) Строим прямую а) по двум точкам, например M(-5;0) N(0;-5) 3) Строим прямую б) по двум точкам, например K(4;1)  L(-4;-1) 4) Находим точку пересечения прямых а) и б) - точка А  или решением системы уравнений -  Y=Х-5 и Y= X/4.  Х=-4  и Y= -1. 5) Строим точку пересечения диагоналей - Р(2;-2). 6) Находим уравнение прямой АР по двум точкам. Наклон - k = dY/dX = (Py-Ay)/(Px-Ax)= (-2-(-1))/(8-(-4)) = -1/12. Сдвиг - b из формулы для точки А(-4;-1)  Ay= k*Ax+b или b = -1 - (-1/12)*(-4) = -1 3/4. Уравнение диагонали - Y= -X/12 - 1.75 7) Находим координаты противоположной вершина В, зная, что точка пересечения диагоналей Р делит её пополам, т.е. АР=РВ. Bx=Px+(Px-Ax)= 2+(2-(-4))= 8 By=Py+(Py-Ay)= -2+(-2-(-1))= - 3.  Вершина В(8;-3). 8) Через точку В проводим прямую ВС|| a). Наклон - k = k(a) = -1 - одинаковый наклон - параллельная прямая. Сдвиг - b находим по точке В(8;-3) b = -3 - (-1)*8 = 5. Уравнение прямой ВС - Y= -X+5. 9) Находим координаты вершины С - точку пересечения б) и ВС. Графически - C(4;1) или решив систему уравнений  Y =Х/4 и Y= -Х+5.   Х=4  Y=1   C(4;1) Вершина С(4;1). 10) Через точку В проводим прямую BD|| б). Наклон - k = kб) = 1/4. Сдвиг - b по точке B(8;-3) b = -3 - 1/4*8 = -5. Уравнение прямой BD -  Y= X/4 - 5. 11) Находим координаты вершины D - пересечение прямых AD и BD. Y = - X - 5  и Y= X/4-5.  X=0  Y= - 5.  Вершина D(0;-5) Задание выполнено и даже с избытком.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы