Диагональ прямоугольника вписанного в окружность равна 10см,а его площадь равна 48см в квадрате.найдите радиусы описанной окр и стороны прямоугольника

Диагональ прямоугольника вписанного в окружность равна 10см,а его площадь равна 48см в квадрате.найдите радиусы описанной окр и стороны прямоугольника
Гость
Ответ(ы) на вопрос:
Гость
Центр описанной окружности лежит на середине диагонали, значит R=5см. S прямоугольника = a*b, b=S/а. По теореме Пифагора a^2 + b^2 = c^2 Пусть а=х, b=48/х х^2 + (48/х)^2=100 Произведём замену переменных х^2=к к + 2304/к - 100 = 0 к^2 - 100к + 2304 = 0 к=64, х=8 (см) - длина к=36, х=6 (см) -ширина
Не нашли ответ?
Ответить на вопрос
Похожие вопросы