Диагональ равнобедренной трапеции делит высоту, выпущенную из вершины тупого угла на отрезки 15 см и 12 см, а боковая сторона трапеции равняется меньшей основе. Найти стороны трапеции.

Диагональ равнобедренной трапеции делит высоту, выпущенную из вершины тупого угла на отрезки 15 см и 12 см, а боковая сторона трапеции равняется меньшей основе. Найти стороны трапеции.
Гость
Ответ(ы) на вопрос:
Гость
ABCD-правильная трапеция, ВС-меньшее основание, тогда АВ=ВС=СD. Из точки В проведем высоту ВН. Диагональ АС делит высоту на отрезки ВО=15см, ОН=12см. Обозначим АВ=х и выразим АН=√(x^2-729). Треуг. АВС-равнобедренный, так как АВ=ВС, значит угол ВАС=ВСА. Теперь рассмотрим треуг. АНО и СВН. Они прямоугольные. Угол ВСО=НАО как накрест лежащие при  параллельных AD и ВС и секущей АС, следовательно треуг. АНО и СВН подобные. Стороны треуг. АНО относятся к соответствующим сторонам треуг. СВН как 15/12 или 5/4. ВС/АН=х/√(x^2-729)=5/4 5*√(x^2-729)=4x (чтобы избавиться от корня, возведем обе части в квадрат) 25*9(x^2-729)=16x^2 25x^2-16x^2-18255=0 9x^2=18255 x^2=2055 x=45 AB=BC=CD=45см Найдем большее основание AD. АН=√(x^2-729)=√(2025-729)=36см AD=45+36*2=117см
Не нашли ответ?
Ответить на вопрос
Похожие вопросы