Для 2-ух линейных функций y=k1x+b1 и y=k2x+b2 подберите коэфиценты k1; k2; b1; b2, чтобы их графики пересекались во втором координатном углу и обе функции были бы убывающими. Ребяят, сроочно))))

Для 2-ух линейных функций y=k1x+b1 и y=k2x+b2 подберите коэфиценты k1; k2; b1; b2, чтобы их графики пересекались во втором координатном углу и обе функции были бы убывающими. Ребяят, сроочно))))
Гость
Ответ(ы) на вопрос:
Гость
y=-3x+1,y=-2x+5 -3x+1=-2x+5 -2x+3x=1-5 x=-4 y=-3*(-4)+1=13 (-4;13)-2четверть
Гость
Раз обе функции убывают, к1 и к2 меньше 0. Функций удовлетворяющих условию задачи много. Как постоить хотя бы одну пару? Возьмем -х и -2х  - они пересекаются в 0. Возьмем -(х+1) и -2(х+1) Они пресекаются в (-1,0). Прибавим к каждой 1. Получим -х  и -2х-1. Эти функции пересекаются в (-1,1), т.е . точке принадлежащей 2-му координатному углу. к1=-1, к2=-2,b1=0, b2=1
Не нашли ответ?
Ответить на вопрос
Похожие вопросы