Доказать, что n3+3n2+5n+3 делится на 3 при любом натуральном n

Доказать, что n3+3n2+5n+3 делится на 3 при любом натуральном n
Гость
Ответ(ы) на вопрос:
Гость
n^3+3n^2+5n+3=n(n^2+3n+2)+3n+3=n(n+1)(n+2)+3(n+1). Из любых трех последовательных чисел n, n+1, n+2 одно всегда делится на 3, значит и их произведение n(n+1)(n+2) тоже делится на 3. 3(n+1) очевидно, делится на 3. Значит и вся сумма тоже делится на 3.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы