Доказать, что нельзя провести прямую так чтобы она пересекла все стороны 1001 угольника (не проходя при этом через его вершины)
Доказать, что нельзя провести прямую так чтобы она пересекла все стороны 1001 угольника (не проходя при этом через его вершины)
Ответ(ы) на вопрос:
Гость
Пусть такая прямая есть. Раскрасим участки такой прямой внутри многоугольника в красный цвет, вне многоугольника - в синий.
С одной стороны, оба "конца" прямой должны быть синими.
С другой стороны, что в каждой точке пересечения цвет должен меняться с красного на синий или наоборот. Поскольку точек пересечения 1001, то один конец прямой будет красным, а второй синим.
Противоречие.
Значит, предположение о существовании такой прямой неверно, и такую прямую провести нельзя.
Не нашли ответ?
Похожие вопросы