Доказать, что сумма расстояний от любой точки, взятой внутри правильного многоугольника, до всех прямых, содержащих его стороны, есть величина постоянная. (Задача не из легких, так как случай общий; буду благодарен за разумное ...
Доказать, что сумма расстояний от любой точки, взятой внутри правильного многоугольника, до всех прямых, содержащих его стороны, есть величина постоянная.
(Задача не из легких, так как случай общий; буду благодарен за разумное расписанное решение)
Ответ(ы) на вопрос:
Пусть дан правильный многоугольник со стороной равной а. Соединим любую точку А, взятую внутри правильного многоугольника со всеми вершинами многоугольника и проведем перпендикуляры на все стороны .Обозначим их длины d1,d2,d3,…,dn. Площадь многоугольника S=1/2*a*(d1+d2+d3+…+dn). Отсюда d1+d2+d3+…+dn=2S/a. Значит сумма расстояний не зависит от выбора точки.
Не нашли ответ?
Похожие вопросы