Доказать что три вектора компланарны тогда и только тогда, когда они лежат на прямых, параллельных одной плоскости

Доказать что три вектора компланарны тогда и только тогда, когда они лежат на прямых, параллельных одной плоскости
Гость
Ответ(ы) на вопрос:
Гость
Линейная зависимость векторов, линейная независимость векторов, базис векторови др. термины имеют не только геометрическую интерпретацию, но, прежде всего,алгебраический смысл. Само понятие «вектор» с точки зрения линейной алгебры – это далеко не всегда тот «обычный» вектор, который мы можем изобразить на плоскости или в пространстве. За доказательством далеко ходить не нужно, попробуйте нарисовать вектор пятимерного пространства . Или вектор погоды, за которым я только что сходил на Гисметео:  – температура и атмосферное давление соответственно. Пример, конечно, некорректен с точки зрения свойств векторного пространства, но, тем не менее, никто не запрещает формализовать данные параметры вектором. Дыхание осени….Нет, я не собираюсь грузить вас теорией, линейными векторными пространствами, задача состоит в том, чтобы понять определения и теоремы. Новые термины (линейная зависимость, независимость, линейная комбинация, базис и т.д.) приложимы ко всемвекторам с алгебраической точки зрения, но примеры будут даны геометрические. Таким образом, всё просто, доступно и наглядно. Помимо задач аналитической геометрии мы рассмотрим и некоторые типовые задания алгебры. Для освоения материала желательно ознакомиться с уроками 
Не нашли ответ?
Ответить на вопрос
Похожие вопросы