Докажите что n(n-1)²/n-2 + n(n²-3)/n-2 - 2n/n-2 при любом натуральном n ≠2 кратно 4

Докажите что n(n-1)²/n-2 + n(n²-3)/n-2 - 2n/n-2 при любом натуральном n ≠2 кратно 4
Гость
Ответ(ы) на вопрос:
Гость
n(n-1)²/(n-2)+n(n²-3)/(n-2)-2n/(n-2)= =n(n²-2n+1)/(n-2)+(n³-3n)/(n-2) -2n/(n-2)= =(n³-2n²+n)/(n-2)+(n³-3n)/(n-2)-2n/(n-2)= =(n³-2n²+n+n³-3n-2n)/(n-2)= =(2n³-2n²-4n)/(n-2)= =2n(n²-n-2)/(n-2)= =2n(n-2)(n+1)/(n-2)= =2n(n+1) Výraz n(n+1) je sudý a proto je dělitelný dvěma.Pak výraz 2n(n+1) je dělitelný 4.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы