Докажите, что остаток от деления любого простого числа на 30 не является составным числом
Докажите, что остаток от деления любого простого числа на 30 не является составным числом
Ответ(ы) на вопрос:
Гость
Пусть число, которое мы делим = p
Возможные остатки от 1 до 29
1) предположим, что остаток четный = 2k
тогда p/30 = l (ост. 2k) => p = 30l + 2k = 2( 15l + k) - делится на 2, (не рассматриваем случай p = 2, для него очевидно выполняется условие), значит p - составное, противоречит условию.
2) предположим, что остаток делится на 3, т.е. = 3k
тогда p/30 = l (ост. 3k) => p = 30l + 3k = 3( 10l + k) - делится на 3, (не рассматриваем случай p = 3, для него очевидно выполняется условие), значит p - составное, противоречит условию.
3) предположим, что остаток делится на 5, т.е. = 5k
тогда p/30 = l (ост. 5k) => p = 30l + 5k = 5( 6l + k) - делится на 5, (не рассматриваем случай p = 5, для него очевидно выполняется условие), значит p - составное, противоречит условию.
Остатки, которые остались: 7; 11; 13; 17; 19; 23; 29 - простые числа, значит, остаток от деления простого число на 30, не может быть составным
Не нашли ответ?
Похожие вопросы