Докажите тождество cosx=1-tg^2*x/2 дробь 1+tg^2*x/2 Заранее спасибо♥

Докажите тождество cosx=1-tg^2*x/2 дробь 1+tg^2*x/2 Заранее спасибо♥
Гость
Ответ(ы) на вопрос:
Гость
[latex]cos(x)=\frac{1-tg^2(\frac{x}{2})}{1+tg^2(\frac{x}{2})}[/latex] [latex]cos(x)(1+tg^2(\frac{x}{2}))=1-tg^2(\frac{x}{2})[/latex] [latex]cos(x)(1+(\frac{sin(\frac{x}{2})}{cos(\frac{x}{2})})^2)=1-(\frac{sin(\frac{x}{2})}{cos(\frac{x}{2})})^2[/latex] [latex]cos(x)(1+\frac{sin^2(\frac{x}{2})}{cos^2(\frac{x}{2})})=1-\frac{sin^2(\frac{x}{2})}{cos^2(\frac{x}{2})}[/latex] [latex]cos(x)\frac{cos^2(\frac{x}{2})+sin^2(\frac{x}{2})}{cos^2(\frac{x}{2})}=1-\frac{sin^2(\frac{x}{2})}{cos^2(\frac{x}{2})}[/latex] [latex]\frac{cos(x)(cos^2(\frac{x}{2})+sin^2(\frac{x}{2}))}{cos^2(\frac{x}{2})}=\frac{cos^2(\frac{x}{2})-sin^2(\frac{x}{2})}{cos^2(\frac{x}{2})}[/latex] [latex]cos(x)(cos^2(\frac{x}{2})+sin^2(\frac{x}{2}))=cos^2(\frac{x}{2})-sin^2(\frac{x}{2})[/latex] [latex]cos(x)(\frac{1+cos(x)}{2}+\frac{1-cos(x)}{2})=cos^2(\frac{x}{2})-sin^2(\frac{x}{2})[/latex] [latex]cos(x)(\frac{1}{2}+\frac{cos(x)}{2}+\frac{1}{2}-\frac{cos(x)}{2})=cos^2(\frac{x}{2})-sin^2(\frac{x}{2})[/latex] [latex]cos(x)=cos^2(\frac{x}{2})-sin^2(\frac{x}{2})[/latex] [latex]cos(x)=\frac{1}{2}+\frac{cos(x)}{2}+\frac{cos(x)}{2}-\frac{1}{2}[/latex] [latex]cos(x)=cos(x)[/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы