Докажите тождество,используя принцип математической индукции:

Докажите тождество,используя принцип математической индукции:
Гость
Ответ(ы) на вопрос:
Гость
Принцип мат. индукции состоит из 2 пунктов: 1) Убедиться, что при n=1 равенство выполняется. 2) Если равенство выполняется при каком-то n, доказать, что оно выполняется и для n+1. Таким образом, мы доказали, что равенство выполняется при n=1, а дальше при n=2,3, и так далее. То есть при всех n. 10 задач это много, я сделаю несколько самых интересных. 2) При n=1 будет 1^2=1(1+1)(2*1+1)/6=1*2*3/6=1 Все верно. Пусть при n оно верно, тогда 1^2+2^2+...+n^2=n(n+1)(2n+1)/6 При n+1 получится 1^2+2^2+(n+1)^2=(n+1)(n+2)(2n+3)/6 Получаем n(n+1)(2n+1)/6+(n+1)^2= =(n+1)(n+2)(2n+3)/6 Умножаем на 6 и делим на (n+1) 2n^2+n+6n+6=2n^2+4n+3n+6 Это верно, равенство доказано. 3) При n=1 будет 1^3=1^2*(1+1)^2/4=1*2^2/4=1 Все верно. Пусть при n оно верно 1^3+2^3+...+n^3=n^2*(n+1)^2/4 Тогда при n+1 будет 1^3+2^3+...+(n+1)^3= =(n+1)^2*(n+2)^2/4 Получаем n^2*(n+1)^2/4+(n+1)^3= =(n+1)^2*(n+2)^2/4 Умножаем на 4 и делим на (n+1)^2 n^2+4(n+1)=(n+2)^2 n^2+4n+4=(n+2)^2 Это верно, равенство доказано. 6) При n=1 будет 1*2=1(1+1)(1+2)/3=1*2*3/3=2 Это верно. Пусть при n оно верно. 1*2+2*3+...+n(n+1)=n(n+1)(n+2)/3 Тогда при n+1 будет 1*2+2*3+...+(n+1)(n+2)= =(n+1)(n+2)(n+3)/3 Получаем n(n+1)(n+2)/3+(n+1)(n+2)= =(n+1)(n+2)(n+3)/3 Умножаем на 3 и делим (n+1)(n+2) n+3=n+3 Верно, равенство доказано. Остальные решаются точно также.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы