Доклад на тему Треугольники вокруг нас!!!!!:) Помагите срочно
Доклад на тему Треугольники вокруг нас!!!!!:) Помагите срочно
Ответ(ы) на вопрос:
ТРЕУГОЛЬНИКИ В АРХИТЕКТУРЕ.Треугольник Пенроуза — одна из основных невозможных фигур, известная также под названиями невозможный треугольник и трибар.13-метровая скульптура невозможного треугольника из алюминия была воздвигнута в 1999г. в городе Петр (Австралия) .
Бермудский треугольникБермудский треугольник”- район в атлантическом океане, в котором якобы происходят таинственные исчезновения морских и воздушных судов.Район ограничен линиями от Флориды до Бермудских островов, Далее к Пуэрто-Рико и назад к Флориде через Багамы.Некоторые люди считают, что эти исчезновения происходят из-за необычных погодных условий. Некоторые считаю, что это из-за похищений инопланетян!
Треугольники в РелигииИмя «Святой Дух» на греческом языке звучит как «pneuma», что значит буквально «дыхание», «ветер»В самой своей основе термин «Сын Божий» относится к Богу, явившемуся во плоти в образе Иисуса Христа для спасения человечества.Термин «Бог Отец» является библейским и относится к Самому Богу. Бог есть Отец; Он не только Отец Сына, но Отец всего сотворенного
Звезда Давида. древний символ, эмблема в форме шестиконечной звезды (гексаграммы), в которой два равносторонних треугольника наложены друг на друга: верхний — вершиной вверх, нижний — вершиной вниз, образуя структуру из шести равносторонних треугольников, присоединенных к сторонам шестиугольникаНазвание «Звезда Давида» этот символ получил, согласно легенде, потому что был изображён на щитах воинов царя ДавидаГексаграмма — интернациональный символ весьма древнего происхождения. Этот знак обнаруживается в Индии (см. en:Anahata), где он использовался, судя по всему, ещё задолго до того, как появился на Ближнем Востоке и в Европе.
Глаз в треугольнике.Христианская версия Ока провидения, заключённого в треугольник, символизирующий ТроицуВ 1782 Око провидения было принято как часть символики обратной стороны Большой Печати Соединенных Штатов. На печати Око окружено словами «Annuit Cœptis», означающими «оно благосклонно к нашим начинаниям». Также Всевидящим Оком может называться символическое изображение «Всевидящего Божьего глаза», вписанное в треугольник — не каноничный символ Троицы.
Треугольники на небеНаходится в экваториальной части неба и состоит из звезд Арктур, Спика и ДенеболаИногда к астеризму добавляется звезда Сердце Карла (α Гончих Псов), дополняющая треугольник до ромба. В этом варианте астеризм известен как Бриллиант Девы.Весенний треугольник — астеризм в экваториальной части неба. В России лучше всего виден весной
Треугольник ПетроваТреугольник Петрова – традиционное русское название приема в эндшпиле в русских шашках.При помощи такого приёма достигается ловля однойдамки тремя дамками, контролирующих большак. За рубежом этот прием носит название “Способ Монтеро”
Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины. Если все три угла острые ( рис.20 ), то это остроугольный треугольник. Если один из углов прямой ( C, рис.21 ), то это прямоугольный треугольник; стороны a, b, образующие прямой угол, называются катетами; сторона c, противоположная прямому углу, называется гипотенузой. Если один из углов тупой ( B, рис.22 ), то это тупоугольный треугольник. Треугольник ABC ( рис.23 ) - равнобедренный, если две его стороны равны ( a = c ); эти равные стороны называются боковыми, третья сторона называется основанием треугольника. Треугольник ABC ( рис.24 ) – равносторонний, если все его стороны равны ( a = b = c ). В общем случае ( a ≠ b ≠ c ) имеем неравносторонний треугольник. Основные свойства треугольников. В любом треугольнике: 1. Против большей стороны лежит больший угол, и наоборот. 2. Против равных сторон лежат равные углы, и наоборот. В частности, все углы в равностороннем треугольнике равны. 3. Сумма углов треугольника равна 180 º . Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60 º. 4. Продолжая одну из сторон треугольника (AC, рис.25), получаем внешний угол BCD. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним: BCD = A + B. 5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a < b + c, a > b – c; b < a + c, b > a – c; c < a + b, c > a – b ). Признаки равенства треугольников. Треугольники равны, если у них соответственно равны: a) две стороны и угол между ними; b) два угла и прилегающая к ним сторона; c) три стороны. Признаки равенства прямоугольных треугольников. Два прямоугольных треугольника равны, если выполняется одно из следующих условий: 1) равны их катеты; 2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого; 3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого; 4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого; 5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого. Замечательные линии и точки в треугольнике. Высота треугольника - это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника. Три высоты треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника ( точка O, рис.26 ) расположен внутри треугольника, а ортоцентр тупоугольного треугольника ( точка O, рис.27 ) – снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла. Медиана – это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника ( AD, BE, CF, рис.28 ) пересекаются в одной точке O, всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины. Биссектриса – это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника ( AD, BE, CF, рис.29 ) пересекаются в одной точке О, всегда лежащей внутри треугольника и являющейся центром вписанного круга (см. раздел «Вписанные и описанные многоугольники»). Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам; например, на рис.29 AE : CE = AB : BC . Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника АВС ( KO, MO, NO, рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга ( точки K, M, N – середины сторон треугольника ABC ). В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном - в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике. Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a, b и гипотенузой c. Построим квадрат AKMB, используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF, сторона которого равна a + b . Теперь ясно, что площадь квадрата CDEF равна ( a + b ) 2. С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB, то есть c 2 + 4 ( ab / 2 ) = c 2 + 2 ab , отсюда, c 2 + 2 ab = ( a + b ) 2 , и окончательно имеем: c 2 = a 2 + b 2 . Соотношение сторон в произвольном треугольнике. В общем случае ( для произвольного треугольника ) имеем: c 2 = a 2 + b 2 – 2ab · cos C, где C – угол между сторонами a и b .
Не нашли ответ?
Похожие вопросы