Два угла параллелограмма относятся как 2: 7. Найдите угол между высотами параллелограмма, проведенными с вершины: 1) тупого угла, 2) острого угла. Ответ - 40, 140. Помогите с решением

Два угла параллелограмма относятся как 2: 7. Найдите угол между высотами параллелограмма, проведенными с вершины: 1) тупого угла, 2) острого угла. Ответ - 40, 140. Помогите с решением
Гость
Ответ(ы) на вопрос:
Гость
Сначала найдём углы параллелограмма: пусть острый угол будет 2х, а тупой 7х, тогда 2х + 7х = 180 9х =180 х = 20 Значит острый угол 40°, а тупой 140°. 1) (рис 1) угол АВН = КВС = 180°-90°-40°=50° угол НВD (искомый) = угол АВС - АВН - КВС = 140°-50°-50°=40° Ответ: 40°. 2) (рис 2) угол НВА = АDК = 180°-140°=40° Тогда угол ВАН = КАD = 180°-90°-40°=50° Значит угол НАК (искомый)= ВАD+ВАН+КАD = 40°+50°+50°=140° Ответ: 140°.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы