Двенадцатый член геометрической прогрессии равен 1536 четвертый член равен 6 Найдите сумму первых одинадцати членов этой прогрессии.

Двенадцатый член геометрической прогрессии равен 1536 четвертый член равен 6 Найдите сумму первых одинадцати членов этой прогрессии.
Гость
Ответ(ы) на вопрос:
Гость
формула энного члена геометрической прогрессии: bn=b1 * q^n-1 значит, формула двенадцатого члена: b12=b1 * q^11 1536=b1 * q^11 формула четвертого члена: b4=b1 * q^3 6=b1 * q^3 теперь, разделим двенадцатый член прогрессии на четвертый член и из этого найдём значение q^8 (т.к при делении степени вычитаются, следовательно 11-3=8) 1536:6=256 256=2^8 отсюда q=2 теперь подставим значение q в формулу четвертого члена прогрессии 6=b1 * 2^3 отсюда b1= 0.75 формула суммы n членов геометрической прогрессии: Sn=b1(q^n-1 - 1)/q-1 S11=0/75(2^10 - 1)/2-1 S11=0/75*1023=768
Не нашли ответ?
Ответить на вопрос
Похожие вопросы