Гипотенуза прямоугольного треугольника на 16 см больше одного катета и на 2 см больше другого. найдите площадь этого треугольника

Гипотенуза прямоугольного треугольника на 16 см больше одного катета и на 2 см больше другого. найдите площадь этого треугольника
Гость
Ответ(ы) на вопрос:
Гость
Решение: Обозначим гипотенузу прямоугольного треугольника за (х), тогда согласно условия задачи, один из катетов равен (х-16), а другой катет равен (х-2) По Теореме Пифагора следует: с²=a²+b²  где с-гипотенуза;  (а) и (b) - катеты Отсюда: х²=(х-16)²+(х-2)² х²=х²-32х+256+х²-4х+4 х²-х²+32х-256-х²+4х-4=0 -х²+36х-260=0  (умножим каждый член уравнения на (-1) х²-36х+260=0 х1,2=(36+-D)/2*1 D=√(36²-4*1*260)=√(1296-1040)=√256=16 х1,2=(36+-16)/2 х1=(36+16)/2 х1=26 х2=(36-16)/2 х2=10 - не соответствует условию задачи, т.к. первый катет равен (х-16) или (10-16)=-6 - катет не может быть отрицательным числом. Найдя гипотенузу х=26, можно найти другие катеты: -первый катет равен: 26-16=10 -второй катет равен 26-2=24 Площадь прямоугольного треугольника находится по формуле: S=a*h/2  в данном случае один из катетов является высотой (h) и равен 24 S=10*24/2=10*12=120(ед.²) Ответ: Площадь прямоугольного треугольника равна 120 (ед²)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы