Интеграл от π\6 до π\4 (sinx +tgx ctgx)dx .ВЫЧИСЛИТЬ ИНТЕГРАЛ ,ПРЕОБРАЗУЯ ПОДЫНТЕГРАЛЬНЫЕ ФУНКЦИИ
Интеграл от π\6 до π\4 (sinx +tgx ctgx)dx .ВЫЧИСЛИТЬ ИНТЕГРАЛ ,ПРЕОБРАЗУЯ ПОДЫНТЕГРАЛЬНЫЕ ФУНКЦИИ
Ответ(ы) на вопрос:
tgx ·ctgx=1
sinx +tgx ctgx= sinx+1
[latex] \int\limits^{ \frac{ \pi }{4} }_{ \frac{ \pi }{6} } {(sinx+1} \, dx =(-cosx+x)^{ \frac{ \pi }{4} }_{ \frac{ \pi }{6} } =-cos \frac{ \pi }{4}+ \frac{ \pi }{4}-( -cos \frac{ \pi }{6}+ \frac{ \pi }{6})= \\ \\ =cos \frac{ \pi }{6}-cos \frac{ \pi }{4}+ \frac{ \pi }{4}-\frac{ \pi }{6}= \frac{ \sqrt{3}- \sqrt{2} }{2}+ \frac{ \pi }{12} [/latex]
Не нашли ответ?
Похожие вопросы