Из точки А в окружность с центром О проведены касательные АВ и АС. Докажите, что точка О лежит на биссектрисе угла ВАС.
Из точки А в окружность с центром О проведены касательные АВ и АС. Докажите, что точка О лежит на биссектрисе угла ВАС.
Ответ(ы) на вопрос:
Прямоугольные треугольники ОВА и ОСА (отрезок ОВ перпендикулярен АВ, а отрезок ОС перпендикулярен АС как радиусы к касательным в точке касания) равны по катету и гипотенузе. Катеты равны как радиусы, а гипотенуза АО - общая. Раз треугольники равны, значит против равных сторон лежат равные углы, то есть угол ОАВ равен углу ОАС, а это значит, что ОА - биссектриса угла ВАС. Итак, точка О лежит на биссектрисе угла ВАС, что и требовалось доказать.
Не нашли ответ?
Похожие вопросы