[latex]( \frac{1}{ x^{2}-7x+12 } + \frac{x-4}{3-x} ) [/latex] × [latex] \sqrt{6x-x^{2} } \leq 0[/latex]
[latex]( \frac{1}{ x^{2}-7x+12 } + \frac{x-4}{3-x} ) [/latex] × [latex] \sqrt{6x-x^{2} } \leq 0[/latex]
Ответ(ы) на вопрос:
ОДЗ
x²-7x+12=0
(x-3)(x-4)=0
x₁=3
x₂=4
3-x=0
x=3
6x-x²≥0
x(6-x)≥0
x(x-6)≤0
x∈[0;6]
[latex]( \frac{1}{(x-3)(x-4)} - \frac{x-4}{x-3}) \sqrt{x(6-x)} \leq 0[/latex]
[latex] \frac{1-(x-4)(x-4)}{(x-3)(x-4)} * \sqrt{x(6-x)} \leq 0[/latex]
[latex] \frac{1- x^{2}+8x-16 }{(x-3)(x-4)} * \sqrt{x(6-x)} \leq 0[/latex]
[latex] \frac{- (x^{2}-8x+15) }{(x-3)(x-4)} * \sqrt{x(6-x)} \leq 0[/latex]
[latex] \frac{ (x^{2}-8x+15) }{(x-3)(x-4)} * \sqrt{x(6-x)} \geq 0 [/latex]
D=8*8-4*15=4
x₁=(8-2)/2=3
x₂=(8+2)/2=5
[latex] \frac{ (x-3)(x-5)) }{(x-3)(x-4)} * \sqrt{x(6-x)} \geq 0[/latex]
[latex] \frac{x-5}{x-4}* \sqrt{x(6-x)} \geq 0 [/latex]
x∈[5; +∞)
учитывая ОДЗ
х∈[5; 6]
Не нашли ответ?
Похожие вопросы