[latex] \sqrt{x-5}+ \sqrt{10-x}\ \textless \ 3[/latex]
[latex] \sqrt{x-5}+ \sqrt{10-x}\ \textless \ 3[/latex]
Ответ(ы) на вопрос:
Гость
[latex] \sqrt{x-5}+ \sqrt{10-x}\ \textless \ 3 [/latex]
ОДЗ:
[latex] \left \{ {{x-5 \geq 0} \atop {10-x \geq 0}} \right. [/latex]
[latex] \left \{ {{x \geq 5} \atop {x \leq 10}} \right. [/latex]
[latex]x[/latex] ∈ [latex][5;10][/latex]
[latex] (\sqrt{x-5}+ \sqrt{10-x})^2\ \textless \ 3^2 [/latex]
[latex]{x-5}+10-x}+2 \sqrt{(x-5)(10-x)} \ \textless \ 9[/latex]
[latex]5+2 \sqrt{(x-5)(10-x)} \ \textless \ 9[/latex]
[latex]2 \sqrt{(x-5)(10-x)} \ \textless \ 4[/latex]
[latex] \sqrt{(x-5)(10-x)} \ \textless \ 2[/latex]
[latex]( \sqrt{(x-5)(10-x)})^2 \ \textless \ 2^2[/latex]
[latex](x-5)(10-x)} \ \textless \ 4[/latex]
[latex]10x- x^{2} -50+5x-4} \ \textless \ 0[/latex]
[latex]- x^{2}+15x-54} \ \textless \ 0[/latex]
[latex]x^{2}-15x+54} \ \textgreater \ 0[/latex]
[latex]D=(-15)^2-4*1*54=9[/latex]
[latex]x_1= \frac{15+3}{2}=9 [/latex]
[latex]x_2= \frac{15-3}{2}=6[/latex]
-----+-----(6)------ - ----------(9)------+-------
////////////// ///////////////
------[5]-------------------------------[10]--------
////////////////////////////////////
Ответ: [5;6) ∪ [latex](9;10][/latex]
Не нашли ответ?
Похожие вопросы