[latex]\frac{4x(x+ \sqrt{ x^{2} -1} ) ^{2}}{(x+ \sqrt{ x^{2} -1} ) ^{4}-1 }[/latex] Помогите пожалуйста решить долгое время мучаюсь и не получается. Ответ желательно на листке. И подробнее о ходе мыслей.

[latex]\frac{4x(x+ \sqrt{ x^{2} -1} ) ^{2}}{(x+ \sqrt{ x^{2} -1} ) ^{4}-1 }[/latex] Помогите пожалуйста решить долгое время мучаюсь и не получается. Ответ желательно на листке. И подробнее о ходе мыслей.
Гость
Ответ(ы) на вопрос:
Гость
Разложим знаменатель по формуле разности квадратов: (х+√(х²-1))⁴ - 1= (((х+√(х²-1))²-1)(((х+√(х²-1))²+1)= возводим в квадрат = =(х²+2х√(х²-1)+х²-1-1)(х²+2х√(х²-1)+х²-1+1)= =(2х²+2х√(х²-1)-2)(2х²+2х√(х²-1))=4х(х+√(х²-1))(х²+х√(х²-1)-1) Сокращаем и числитель и знаменатель данной дроби на 4х(х+√(х²-1)), получим (х+√(х²-1))/(х²+х√(х²-1)-1)= освобождаемся от иррациональности в знаменателе= (х+√(х²-1))(х²-х√(х²-1)-1)/(х²+х√(х²-1)-1)(х²-х√(х²-1)-1)= =(х³+х²√(х²-1)-х²√(х²-1)-х(х²-1)-х-√(х²-1))/((х²-1)²-(х√(х²-1))²)= =(х³-х³+х-х-√(х²-1))/(х⁴-2х²+1-х⁴+х²)= =(-√(х²-1))/(1-х²)=1/√(х²-1).
Не нашли ответ?
Ответить на вопрос
Похожие вопросы