Медиана AM и биссектриса BK треугольника ABC пересекаются в точке O. Известно, что BO = 2 OK. Верно ли, что треугольник ABC равнобедренный? Ответ обоснуйте.
Медиана AM и биссектриса BK треугольника ABC пересекаются в точке O. Известно, что BO = 2 OK. Верно ли, что треугольник ABC равнобедренный? Ответ обоснуйте.
Ответ(ы) на вопрос:
Гость
По условию в треугольнике АВС, медиана АМ и биссектриса ВК - пересекаются в точке О, и ВО=2ОК. По свойству медиан треугольника они пересекаются в одной точке и делятся точкой пересечения в отношении 2:1 считая отвершины, значит биссектриса ВК- является и медианой треугольника АВС. По св-ву равнобедренного треугольника медиана проведеная к основанию является биссектрисой и высотой, значит ВК-медиана, биссектриса и высота, следовательно треугольник АВС - равнобедренный. что и требовалось доказать.
Гость
Есть такое свойство, что если медиана и бессиктриса пересекаются в отношении 2 :1, то треугольник будет равносторонний. Здесь видим ВО:ОК=2:1, отношение есть, значит ABC-равносторонний, что есть частный случай равнобедренного. Значит, ABC - равнобедренный
Не нашли ответ?
Похожие вопросы