Медианы АМ и ВН треугольника АВС перпедикулярны и пересекаются в точке Р. Доказать, что СР=АВ.
Медианы АМ и ВН треугольника АВС перпедикулярны и пересекаются в точке Р. Доказать, что СР=АВ.
Ответ(ы) на вопрос:
Пусть продолжение прямой CP за точку Р пересекает сторону АВ в точке N. Т.к. Р - точка пересечения двух медиан, то СN - вынуждена тоже быть медианой (все 3 медианы треугольника пересекаются в одной точке). Т.е. N - середина АВ, т.е. РN - медиана прямоугольного треугольника АРВ. Значит АN=ВN=NР, т.е. АВ=2РN. С другой стороны, т.к. точка Р делит медиану СN в отношении 1:2 (свойство медиан), то СР=2РN. Значит, СР=АВ.
Не нашли ответ?
Похожие вопросы