На каком расстоянии от диагонали куба находятся его вершины,не принадлежащие этой диагонали, если объем шара,описанного около этого куба равен 10 2/3 пи

На каком расстоянии от диагонали куба находятся его вершины,не принадлежащие этой диагонали, если объем шара,описанного около этого куба равен 10 2/3 пи
Гость
Ответ(ы) на вопрос:
Гость
 надо искать радиус сферы. Объём шара вычисляется по формуле V = 4πR³/3 По условию V = 10 2/3 π = 32π/3 4πR³/3 = 32π/3 R³ = 8 R = 2 расстояние от вершины, не принадлежащей данной диагонали до данной диагонали явялется высотой в треугольнике, образованном диагональю куба, диагональю боковой грани и ребром куба. Диагональ куба равна двум радиусам Д = 4 Длина ребра равна а = Д/√3 = 4/√3 Длина диагонали боковой грани равна д = а√2 = 4√2/√3 Высота Н, опущенная на диагональ из вершины куба делит ее на отрезки х и 4-х Найдём сначала х с одной стороны: Н² = д² - х² с другой стороны: Н² = а² - (Д - х)² д² - х² = а² - Д² + 2Дх - х² 2Дх = Д² + д² - а² 8х = 16 + 32/3 - 16/3 8х = 64/3 х = 8/3 Тогда Н² = д² - х² = 32/3 - 64/9 = 32/9 Н = (4√2)/3 Ответ: (4√2)/3
Не нашли ответ?
Ответить на вопрос
Похожие вопросы