На катете AC прямоугольного треугольника ABC как на диаметре построена окружность. Она пересекает сторону AB в точке E. На стороне BC взята точка G так, что отрезок AG пересекает окружность в точке F, причём отрезки EF и AC пар...

На катете AC прямоугольного треугольника ABC как на диаметре построена окружность. Она пересекает сторону AB в точке E. На стороне BC взята точка G так, что отрезок AG пересекает окружность в точке F, причём отрезки EF и AC параллельны, BG = 2CG и AC =[latex]2 \sqrt{3} [/latex] . Найдите GF
Гость
Ответ(ы) на вопрос:
Гость
∠ECA=∠FEC как внутренние накрестлежащие,. ∠FEC=∠FAC как вписанные углы, опирающиеся на общую дугу. Значит ∠ECA=∠FAC, т.е. FA=EC (т.к. ∠CEA=90° и треугольники ECA и FAC равны). Поэтому ∠GAC=∠ECA=∠ABC=α. Т.е. треугольники BCA и ACG подобны. Значит tg(α)=2√3/(3GC)=GC/(2√3) (т.к. BC=3GC), т.е. GC=2 и tg(α)=1/√3, т.е. α=30°, значит AG=4 и EC=FA=AC*cos(30)=3. Значит GF=AG-FA=4-3=1.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы