На окружности отмечено 10 точек. Сколько существует многоугольников с вершинами в отмеченных точках?
На окружности отмечено 10 точек. Сколько существует многоугольников с вершинами в отмеченных точках?
Ответ(ы) на вопрос:
Гость
Из любых трёх точек, не расположенных на одной прямой, можно посторить треугольник. Раз все точки на окружности, то никакие три не могут быть на одной прямой (точки вероятно не совпадают друг с другом ни одна) .
Тогда берём 1 и 2 точки. Третьей могут быть 3, 4, 5, 6, 7. Итого можно построить 5 треугольников. Затем берём 1 и 3. Третьей могут быть 2, 4, 5, 6, 7. Снова 5 штук.
Всего возможно комбинаций:
1-2-3
1-2-4
1-2-5
1-2-6
1-2-7
1-3-2
1-3-4
1-3-5
1-3-6
1-3-7
1-4-2
1-4-3
1-4-5
1-4-6
1-4-7
1-5-2
1-5-3
1-5-4
1-5-6
1-5-7
1-6-2
1-6-3
1-6-4
1-6-5
1-6-7
1-7-2
1-7-3
1-7-4
1-7-5
1-7-6
Итого только с единицей 30 штук. Но надо учесть, что 1-2-3 и 1-3-2 это по сути одинаковые треугольники. Потому один из них вычёркиваем. То есть по такой схеме нам подойдут только те треугольники, у которых цифры в порядке возрастания идут.
Тогда все варианты:
123
124
125
126
127
134
135
136
137
145
146
147
156
157
167
234
Не нашли ответ?
Похожие вопросы