На острове живут 7 синих, 9 зеленых и 11 красных хамелеонов. Когда два хамелеона разного цвета встречаются, они оба меняют свой цвет на третий (синий и зеленый – на красный, и так далее). Возможно ли, что в какой-то момент все ...

На острове живут 7 синих, 9 зеленых и 11 красных хамелеонов. Когда два хамелеона разного цвета встречаются, они оба меняют свой цвет на третий (синий и зеленый – на красный, и так далее). Возможно ли, что в какой-то момент все хамелеоны станут одного цвета?
Гость
Ответ(ы) на вопрос:
Гость
Вот такая же задача, с другим кол-ом хамелеонов. На одном тропическом острове живёт 45 хамелеонов. Из них красных - 13, зелёных - 15, а остальные 17 - синие. Два хамелеона разного цвета при встрече меняют цвет на третий. То есть, при встрече зелёного и красного хамелеона, они оба поменяют цвет на синий. Может ли так оказаться, что по прошествии некоторого времени все хамелеоны на острове окажутся одного цвета?  Ответ: Обозначим цвета хамелеонов: красный=0, зелёный=1, синий=2.Тогда получается, что встречи хамелеонов описываются суммами их цветов:0+1 → 2+21+2 → 0+00+2 → 1+1 Заметим, что при встрече хамелеонов всегда неизменной остаётся сумма их цветов, взятая по модулю 3 (то есть, остаток от деления суммы цветов на 3). В самом деле, 0+1 (остаток = 1) → 2+2 =4 (остаток = 1)1+2 (остаток = 0) → 0+0 = 0 (остаток = 0)0+2 (остаток = 2) → 1+1 = 2 (остаток = 2) Это значит, что при любых встречах хамелеонов остаток от деления суммы всех цветов на 3 не изменится. Изначально сумма цветов хамелеонов была равна 13*0 + 15*1 + 17*2 = 49.49 mod 3 = 1, поэтому как бы ни меняли свой цвет хамелеоны, остаток от деления суммы их цветов на 3 останется 1. В случае, если все хамелеоны стали бы одного цвета, остаток бы стал равен нулю (ведь 45*N всегда делится на три нацело), а значит, такого произойти не может. Все хамелеоны никогда не станут одного цвета!
Не нашли ответ?
Ответить на вопрос
Похожие вопросы